Creating Your First i0S App

Your First iOS App introduces you to the Three Ts of iOS app development:
e Tools. How to use Xcode to create and manage a project.
e Technologies. How to create an app that responds to user input.
e Techniques. How to take advantage of some of the fundamental design patterns that underlie all
iOS app development.

After you complete all the steps in this tutorial, you’ll have an app that looks something like this:

Text field

Hello, You! Label

Button

As you can see above, there are three main user interface elements in the app that you create:

o Atextfield (in which the user enters information)
e A label (in which the app displays information)
e A button (which causes the app to display information in the label)

When you run the finished app, you click inside the text field to reveal the system-provided keyboard.
After you use the keyboard to type your name, you dismiss it (by clicking the Done key) and then you
click the Hello button to see the string “Hello, Your Name!* in the label between the text field and the
button.

Later in Start Developing iOS Apps Today you will work through another tutorial, Internationalize Your
App, and in the process add a Chinese localization to the app you will create in this tutorial.

To benefit from this tutorial, it helps to have some familiarity with the basics of computer programming
in general and with object-oriented programming and the Objective-C language in particular. If you
haven’t used Objective-C before, don’t worry if the code in this tutorial is hard to understand. When you
finish Start Developing iOS Apps Today, you’ll understand the code much better.

Getting Started

To create the 10S app in this tutorial, you need Xcode 4.3 or later. Xcode is Apple’s integrated
development environment (or IDE) for both iOS and Mac OS X development. When you install Xcode on
your Mac, you also get the iOS SDK, which includes the programming interfaces of the iOS platform.

Create and Test a New Project

To get started developing your app, you create a new Xcode project.
1. Open Xcode (by default it’s in /Applications).

If you’ve never created or opened a project in Xcode before, you should see a Welcome to Xcode
window similar to this:

Recents

Welcome to Xcode

Version 4.3 (4E83a)

Create a new Xcode project m

Start bullding a new Mac, iPhone or |Pad
application from one of the included templates

Connect 1o a repository
Use Xcode's Integrated source control features to
work with your existing projects

Learn about using Xcode
Explore the Xcode development environment with
the Xcode 4 User Guide

Go to Apple's developer portal
Visit the Mac and iOS Dev Center websites at
developer.apple.com No Selection

l@l ol A (gj

| Open Other... | (¥ Show this window when Xcode launches | _Cancel][.Open |

If you’ve created or opened a project in Xcode before, you might see a project window instead of
the Welcome to Xcode window.

2. Inthe Welcome to Xcode window, click “Create a new Xcode project” (or choose File > New >
New project).

Xcode opens a new window and displays a dialog in which you can choose a template. Xcode
includes several built-in app templates that you can use to develop common styles of i0S apps.
For example, the Tabbed template creates an app that is similar to iTunes and the Master-Detail
template creates an app that is similar to Mail.

Loading

Choose a template for your new project

el a7 ‘
Application =i P b} ﬂ |
Framework & Library = it L

—Other | Master-Deuall OpenGL Game Page-Based
W 05X Application Application Application

Application 5 q s
Framework & Library X AT
Application Plug-in \ iaud]
System Plug-in
Other Tabbed Application Utility Application Empty Application

\ D - Single View Application
St

This template provides a starting point for an application that uses a single view. It provides a
view controller to manage the view, and a storyboard or nib file that contains the view.

e g TTIU—

3. Inthe iOS section at the left side of the dialog, select Application.

4. Inthe main area of the dialog, select Single View Application and then click Next.

A new dialog appears that prompts you to name your app and choose additional options for your
project.

Loading

Choose options for your new project:

Company Identifier { l

Bundle Identifier com.yourcompany.ProductName

Class Prefix | |

Devices | iPhone :)
™ Use Storyboards
o use Reference G
() Include Unit Tests

Cancel Previous | Next

5. Fill in the Product Name, Company ldentifier, and Class Prefix fields.

You can use the following values:

o Product Name: selloworld
o Company ldentifier: Your company identifier, if you have one.
o Class Prefix: Helloworld

Note: Xcode uses the product name you entered to name your project and the app. Xcode uses the
class prefix name to name the classes it creates for you. For example, Xcode automatically creates
an app delegate class and names it He11loWorldAppDelegate. If you enter a different value for the
class prefix, then the app delegate class is named YourClassPrefixNameapppelegate. TO keep
things simple, this tutorial assumes that you named your product ze11owor1d and that you used
HelloWorld for the class prefix value.

In the Device Family pop-up menu, make sure that iPhone is chosen.

Make sure that the Use Storyboard and Use Automatic Reference Counting options are selected
and that the Include Unit Tests option is unselected.

Click Next.
Another dialog appears that allows you to specify where to save your project.

Specify a location for your project (leave the Source Control option unselected) and then click
Create.

Xcode opens your new project in a window (called the workspace window), which should look
similar to this:

00 I HelloWorld.xcodeproj

2
= m e Xeod ! = 1 —
() (®) (noebene] (=] [b Blo o @oFE (=
Run op Scheme Breakpoints Editoe View Organizer |
M2OA=®B[n « » Mreonodd | o8
» ' ey PROJECT Summary Info Buid Settings Build Phase ¥ Identity
jex) ! iy ey
v (5 Helloworid 3 velioworia 105 Application Target Project Name Melioworld
h) Hellow. legate.h RGETS
B et .wun YARESSS Identifier | edu.self e lloworid Location
Nk :\m | WelloWodd | MelloiWorkd xcodeprof
svimold Version |1.0 L Full Pash [Users fhathryn/
Ul o — , Documents/More Hello/
m Hellow._roller.m ices | Phone s Heloworid)
> [Sepporting Files Deployment Target = HelloWorld.xcodeproj © |
» [Frameworks ¥ Project Documest
» Pro "
i ¥ _iMone / (Pod Degioyment info Project Format | Xcode 3.2-compatible
Main Storyboard | MainStoryboard Samns [Aople nc.
¥ Test set
Main Interface =
ndent Laing | Spaces
Wiaha 4 4
Supported Device Orientations Tab e
= ™ wrap lines
‘.
Poctran TUpside tandy
Down Le
D {lle| =
Pryass Al Object Ubeary 3| (silaE)
) [Push Button - Issercepts mouse-dows
events and seads an aCTion message 10 3
target Object when it's clicked or..
Gradient Button - intercepts mouse~
Retira Display sends an actios
essa0E 10 2 Target ObjeCt when It
iooch bmiges Rounded Rect Button - Imercepts
mouse-down events and sends an
action message 10 a target object
[+] @ Rounded Textured Button -
........... s, smnes and

+ 00 ™ Add Target Validate Settings. -

Take a few moments to familiarize yourself with the workspace window that Xcode opens for you. You’ll
use the buttons and areas identified in the window below throughout the rest of this tutorial.

Scheme pop-up menu View buttons
Run button Editor buttons
) |:) . [HelloWorld.xcodeproj [1 | o
Toolbar Am) Jaa.
v . (}r -
Locasion —— 3
Pl Path
Hedof
= = il
Proes o Yoo | 2-compane 3
Ogasiration Asole | fe.
¥ Teat Sets
ndere Uiing — b
Navigator Editor wen| Utility | <
area area area | "
| Ll omyect Ubcary_ DRy)

If the utilities area in your workspace window is already open (as it is in the window shown above), you
can close it for now because you won’t need it until later in the tutorial. The rightmost View button
controls the utilities area. When the utilities area is visible, the button looks like this:

If necessary, click the rightmost View button to close the utilities area.

Even though you haven’t yet written any code, you can build your app and run it in the Simulator app that
is included in Xcode. As its name implies, Simulator allows you to get an idea of how your app would
look and behave if it were running on an i0S-based device.

1. Make sure that the Scheme pop-up menu in the Xcode toolbar has HelloWorld > iPhone 6.0
Simulator chosen.

If the pop-up menu does not display that choice, open it and choose iPhone 6.0 Simulator from the
menu.

2. Click the Run button in the Xcode toolbar (or choose Product > Run).
Xcode updates you on the build process.
After Xcode finishes building your project, Simulator should start automatically. Because you specified

an iPhone product (rather than an iPad product), Simulator displays a window that looks like an iPhone.
On the simulated iPhone screen, Simulator opens your app, which should look like this:

~ 4

Right now, your app is not very interesting: it simply displays a blank white screen. To understand where
the white screen comes from, you need to learn about the objects in your code and how they work
together to start the app. For now, quit Simulator (choose iOS Simulator > Quit iOS Simulator; make sure
that you don’t quit Xcode).

Find Out How an App Starts Up

Because you based your project on an Xcode template, much of the basic app environment is
automatically set up when you run the app. For example, Xcode creates an application object which,
among a few other things, establishes the run loop (a run loop registers input sources and enables the
delivery of input events to your app). Most of this work is done by the uTapp1icationMain function,
which is supplied for you by the UIKit framework and is automatically called in your project’s main.m
source file.

Note: The UIKit framework provides all the classes that an app needs to construct and manage its user
interface. The UIKit framework is just one of many object-oriented frameworks provided by Cocoa
Touch, which is the app environment for all iOS apps.

1. Make sure the project navigator is open in the navigator area.

The project navigator displays all the files in your project. If the project navigator is not open,
click the leftmost button in the navigator selector bar:

Navigator selector bar ——

v s PROJECT

=21 rarget, iOS SDK 5.0 i d
v [HelloWorld Helowor

@ HelloW...legate.h TARGETS
|m| Hellow...egate.m T TR
Ej MainSt...ryboard
|h] Hellow...troller.h
m] HelloW...roller.m

» [Supporting Files
» [Frameworks
» []Products

2. Open the Supporting Files folder in the project navigator by clicking the disclosure triangle next to
it.

3. Select main.m.

Xcode opens the source file in the main editor area of the window, which should look similar to
this:

| ®00 [HelloWorld - main.m Pl
Build Succeeded | Yesterday a1 855 AM

main.m
HellowWorid

¥ | Melloworld "
h) HelloworldAgoDelegate.h Copyright (c) 2011 Apple Inc. ALl rights reserved,
"
#import <UIKIt/UIKit.h>
#import “HelloworldAppDelogate.h™
int mastn(int argc, char eargv(])
{

Qoutorelessepeal {
return UTAgplicationMainlarge, argv, nil, NSStringFrosClass({HelloMorldApplelegate class
ny

The main function in main.m calls the utapplicationMain function within an autorelease pool:

@Qautoreleasepool {

return UIApplicationMain(argc, argv, nil, NSStringFromClass ([HelloWorldAppDelegate
class]));

}

The cautoreleasepool Statement supports the Automatic Reference Counting (ARC) system. ARC
provides automatic object-lifetime management for your app, ensuring that objects remain in existence for
as long as they're needed and no longer.

The call to uTApplicationMain creates an instance of the uzapplication class and an instance of the
app delegate (in this tutorial, the app delegate iS He11oWor1dappDelegate, Which is provided for you by
the Single View template). The main job of the app delegate is to provide the window into which your
app’s content is drawn. The app delegate can also perform some app configuration tasks before the app is
displayed. (Delegation is a design pattern in which one object acts on behalf of, or in coordination with,
another object.)

In an iOS app, a window object provides a container for the app’s visible content, helps deliver events to
app objects, and helps the app respond to changes in the device’s orientation. The window itself is
invisible.
The call to uTApplicationMain also scans the app’s Info.plist file. The 1nfo.plist file isan
information property list—that is, a structured list of key-value pairs that contains information about the
app such as its name and icon.

« Inthe Supporting Files folder in the project navigator, select He11oWorld-Info.plist.

Xcode opens the tnfo.plist file in the editor area of the window, which should look similar to

eoo [HelloWorld - HelloWorld-info,plist v
= Finished running HelloWorld] - =
(») (m) [Hoho.] [= 3 ‘ Eoes @Eoo @

‘ Run_ Seop Scheme Breakpoints. N hsmas Editoe View Organizer |

w2 ® &4 = » @[= <> D5 - 3 Files) | | sfo.plist | No Selection

+ I MelioWorld Key Type Value
&= 1 asget, 105 SDK S0 Lecalization native development region rin en
v MelloWorld Bundle display mame '] SIMOOUCT NAME)
h) HelloWoridAppDelegate.h Executable file rring SIEXECUTASLE_ NAME)
m HelloWorkdAopDelegate.m e
MainStoryboard. storyboard edu.self, S{PRODUCT_NAME rfc1034identsfier)
h| HelloWorkdViewControlier.h 6.0
= HelloWorkdViewControlier.m T
_| Supporting Files -
| v | Bundle OS Type code String APRL

-

WnfoPSststrings Bundle versions string, short String 10

= mainm . =
1 MelioWorld-Prefix pch 10

» Frameworks Application requires IPhone emvironme: Boolea YES

» [Produats [Wain stonyboard fle base name 3 O© S MaimStoryboard |

» Supported interface orlentations.

+ O@®E(®

In this tutorial, you won’t need to look at any other files in the Supporting Files folder, so you can
minimize distractions by closing the folder in the project navigator. Again click the disclosure triangle
next to the folder icon to close the Supporting Files folder.

Because you chose to use a storyboard in this project, the 1nfo.p1ist file also contains the name of the
storyboard file that the application object should load. A storyboard contains an archive of the objects,
transitions, and connections that define an app’s user interface.

In the HelloWorld app, the storyboard file is named Mainstoryboard.storyboard (note that the
Info.plist file shows only the first part of this name). When the app starts,
MainStoryboard.storyboard IS loaded and the initial view controller is instantiated from it. A view
controller is an object that manages an area of content; the initial view controller is simply the first view
controller that gets loaded when an app starts.

The HelloWorld app contains only one view controller (specifically, HelloWorldviewController).
Right now, HelloworldviewController manages an area of content that is provided by a single view. A
view is an object that draws content in a rectangular area of the screen and handles events caused by the
user’s touches. A view can also contain other views, which are called subviews. When you add a subview
to a view, the containing view is called the parent view and its subview is called a child view. The parent
view, its child views (and their child views, if any) form a view hierarchy. A view controller manages a
single view hierarchy.

Note: The views and the view controller in the HelloWorld app represent two of the three roles for app
objects that are defined by the design pattern called Model-View-Controller (MVC). The third role is the
model object. In MVVC, model objects represent data (such as a to-do item in a calendar app or a shape in
a drawing app), view objects know how to display the data represented by model objects, and controller
objects mediate between models and views. In the HelloWorld app, the model object is the string that
holds the name that the user enters. You don’t need to know more about MVC right now, but it’s a good
idea to begin thinking about how the objects in your app play these different roles.

In a later step, you’ll create a view hierarchy by adding three subviews to the view that’s managed by
HelloWorldviewController; these three subviews represent the text field, the label, and the button.

You can see visual representations of the view controller and its view in the storyboard.
e Select Mainstoryboard.storyboard in the project navigator.

Xcode opens the storyboard in the editor area. (The area behind the storyboard objects—that is,
the area that looks like graph paper—is called the canvas.)

When you open the default storyboard, your workspace window should look similar to this:

eno

:HeHnWor\ﬂ.xmdepmj — = MainStoryboard.storyboard

Canvas

() (8) Gmen] (=] | |\Ee s @aa
Run Stop Scheme Breakpoints Editor View Organizer
mn®4A=>8 |::::‘ « [y)) [5] Mai st... [F) Mai (English) » No Selection
~, HelloWorld
¥ 51 target, i05 50K 6.0 Hello World View Controll...
¥ [_] Helloworld » () Hello World View Controller
AppDelegate. h First Resp:
m| HelloWorldAppDelegate.m B et
h| HelloworidviewController.n
m| HelloorldViewController.m
» (| supporting Files
» [Frameworks
» Products
=
———— Scene
Hello World View Controller —— Scene dock
+| ®OEF® =
Outline view Initial scene
indicator

A storyboard contains scenes and segues. A scene represents a view controller, and a segue represents a

transition between two scenes.

Because the Single View template provides one view controller, the storyboard in your app contains one
scene and no segues. The arrow that points to the left side of the scene on the canvas is the initial scene
indicator, which identifies the scene that should be loaded first when the app starts (typically, the initial
scene is the same as the initial view controller).

The scene that you see on the canvas is named Hello World View Controller because it is managed by the
HelloWorldviewController Object. The Hello World View Controller scene consists of a few items that
are displayed in the Xcode outline view (which is the pane that appears between the canvas and the
project navigator). Right now, the view controller consists of the following items:

o Afirst responder placeholder object (represented by an orange cube).

The first responder is a dynamic placeholder that represents the object that should be the first to
receive various events while the app is running. These events include editing-focus events (such as
tapping a text field to bring up the keyboard), motion events (such as shaking the device), and
action messages (such as the message a button sends when the user taps it), among others. You
won’t be doing anything with the first responder in this tutorial.

e A placeholder object named Exit for unwinding seques.
By default, when a user dismisses a child scene, the view controller for that scene unwinds (or
returns) to the parent scene—that is the scene that originally transitioned to the child scene.
However, the Exit object enables a view controller to unwind to an arbitrary scene.

e ThenrelloworldviewController Object (represented by a pale rectangle inside a yellow sphere).

When a storyboard loads a scene, it creates an instance of the view controller class that manages
the scene.

e A view, which is listed below the view controller (to reveal this view in the outline view, you
might have to open the disclosure triangle next to Hello World View Controller).

The white background of this view is what you saw when you ran the app in Simulator.
Note: An app’s window object is not represented in the storyboard.
The area below the scene on the canvas is called the scene dock. Right now, the scene dock displays the

view controller’s name (that is, Hello World View Controller). At other times, the scene dock can contain
the icons that represent the first responder, the Exit placeholder object, and the view controller object.

Configuring the View

Xcode provides a library of objects that you can add to a storyboard file. Some of these are user interface
elements that belong in a view, such as buttons and text fields. Others are higher-level objects, such as
view controllers and gesture recognizers.

The Hello World View Controller scene already contains a view. Now you need to add a button, a label,
and a text field. Then, you make connections between these elements and the view controller class so that
the elements provide the behavior you want.

Add the User Interface Elements

You add user interface (Ul) elements by dragging them from the object library to a view on the canvas.
After the Ul elements are in a view, you can move and resize them as appropriate.

1. If necessary, select Mainstoryboard.storyboard in the project navigator to display the Hello
World View Controller scene on the canvas.
2. If necessary, open the object library.

The object library appears at the bottom of the utilities area. If you don’t see the object library, you
can click its button, which is the third button from the left in the library selector bar:

o {} A I—Libran.r selector bar

| [objects IS

Object - Provides a template for
cbjects and controllers not directly
available in Interface Builder.

Label - A variably sized amount of
Label static text.

- -, Round Rect Button - Intercepts touch
events and sends an action message to a

3. Inthe object library, choose Controls from the Objects pop-up menu.

Xcode displays a list of controls below the pop-up menu. The list displays each control’s name
and appearance, and a short description of its function.

4. One at a time, drag a text field, a rounded rectangle (Round Rect) button, and a label from the list,
and drop each of them onto the view.

N\ Ao e Ao et =
¥ B targe, 10550K 5.0 —
¥] MelloWorid 2
(B Hello. Jegateh || 3) viallo World View Cont Toa| oL

i Hellow._egate.m e (e

MainSt . ryboard) Multiple Touch
Aizda
| =1 Defaun
Ocawing O Opaque | Widden
M Cears Graphics Context
() Ovp Subviews
o Autoresize Subviews

mlx\::

Segmented Comtrol - Displays
1 2/‘ muliple sepments, each of which
pES -2 functions as 2 discrete button.

Text Fleld - Displays edtable text and
Text | sends an action message 1o a target
cbject when Return is tpped.

®

5. In the view, drag the text field so that it’s near the upper-left corner of the view.

As you move the text field (or any Ul element), dashed blue lines—called alignment guides—
appear that help you align the item with the center and edges of the view. Stop dragging the text
field when you can see the view’s left and upper alignment guides, as shown here:

6. Inthe view, prepare to resize the text field.

You resize a Ul element by dragging its resize handles, which are small white squares that can
appear on the element’s borders. In general, you reveal an element’s resize handles by selecting it
on the canvas or in the outline view. In this case, the text field should already be selected because
you just stopped dragging it. If your text field looks like the one below, you’re ready to resize it; if
it doesn’t, select it on the canvas or in the outline view.

7. Drag the text field’s right resize handle until the view’s rightmost alignment guide appears.

Stop resizing the text field when you see something like this:

8. With the text field still selected, open the Attributes inspector (if necessary).
9. Inthe Placeholder field near the top of the Text Field Attributes inspector, type the phrase your

Name.

As its name suggests, the Placeholder field provides the light gray text that helps users understand
the type of information they can enter in the text field. In the running app, the placeholder text
disappears as soon as the user taps inside the text field.

10. Still in the Text Field Attributes inspector, click the middle Alignment button to center the text
field’s text.

After you enter the placeholder text and change the alignment setting, the Text Field Attributes
inspector should look something like this:

)

Elo o o= |jﬁ|—

Editor View Organizer
| D B 8 |®|(s ©
¥ Text Field
Text | Text

Placeholder | Your Name|

Background | Background Image A4

Disabled | Disabled Background Imagg v

Alignment | =
[—

Border Style | I

Clear Button | Newer appears

|| Clear when editing begins

Text Color | NEEEE | Default =

Font | System 14.0 T]||+)
Min Font Size 17 |5
Adjust to Fit

11. In the view, drag the label so that it’s below the text field and its left side is aligned with the left
side of the text field.

12. Drag the label’s right resize handle until the label is the same width as the text field.

A label has more resize handles than a text field. This is because you can adjust both the height
and the width of a label (you can adjust only the width of a text field). You don’t want to change
the height of the label, so be sure to avoid dragging one of the resize handles in the label’s corners.
Instead, drag the resize handle that’s in the middle of the label’s right side.

O o o
5_351 EE Use this resize handle to
adjust the width of the label

13. In the Label Attributes inspector, click the middle Alignment button (to center the text you’ll
display in the label).

14. Drag the button so that it’s near the bottom of the view and centered horizontally.
15. On the canvas, double-click the button and enter the text rel1lo.

When you double-click the button in the view (and before you enter the text), you should see
something like this:

After you add the text field, label, and button Ul elements and make the recommended layout changes,
your project should look similar to this:

= MainStoryboard. storyboard

4 Succeeded | Todwyat 10124 | Elo o @ ol ©
» “ it View Ot

fditr Vew Ocganizer
View | Label - Label |

L:{;ael

You probably noticed that when you added the text field, label, and button to the background view, Xcode
inserted items in the outline view named Constraints. Cocoa Touch features an Auto Layout system that

lets you define layout constraints for user-interface elements. Constraints represent relationships between

user interface elements that affect how they alter their position and geometry when other views are resized
or when there is an orientation change. You do not change the default constraints for the views you added
to the user interface.

There are a few other changes you can make to the text field so that it behaves as users expect. First,
because users will be entering their names, you can ensure that iOS suggests capitalization for each word
they type. Second, you can make sure that the keyboard associated with the text field is configured for
entering names (rather than numbers, for example) and that the keyboard displays a Done button.

This is the principle behind these changes: Because you know at design time what type of information a
text field will contain, you can configure it so that its runtime appearance and behavior are well suited to
the user’s task. You make all of these configuration changes in the Attributes inspector.

1. Inthe view, select the text field.

2. Inthe Text Field Attributes inspector, make the following choices:
o Inthe Capitalization pop-up menu, choose Words.
o Ensure that the Keyboard pop-up menu is set to Default.
o Inthe Return Key pop-up menu, choose Done.

After you make these choices, the Text Field Attributes inspector should look like this:

oo @Eom (=)

Editor View Organizer
j D B|®l s ©

V¥ Text Field

Text | Plain
Text
Color NN Default

Font System 14.0

Alignment =

Placeholder Your Name

Background | Background Image v
Disabled | Disabled Background Imiv
Border Style | i} O | O NGO

Clear Button | Never appears
Clear when editing begins
Min Font Size 17|15
™ Adjust to Fit

Capitalization | None
Correction | Default
Keyboard | Default
Appearance | Default

Return Key = Done

Auto-enable Return Key
Secure

Run your app in Simulator to make sure that the Ul elements you added look the way you expect them to.
If you click the Hello button, it should become highlighted, and if you click inside the text field, the
keyboard should appear. At the moment, though, the button doesn’t do anything, the label remains empty,
and there’s no way to dismiss the keyboard after it appears. To add this functionality, you need to make
the appropriate connections between the Ul elements and the view controller. These connections are
described next.

Note: Because you’re running the app in Simulator, and not on a device, you activate controls by clicking
them instead of tapping them.

Create an Action for the Button

When the user activates a Ul element, the element can send an action message to an object that knows
how to perform the corresponding action method (such as “add this contact to the user’s list of contacts”).
This interaction is part of the target-action mechanism, which is another Cocoa Touch design pattern.

In this tutorial, when the user taps the Hello button, you want it to send a “change the greeting” message
(the action) to the view controller (the target). The view controller responds to this message by changing
the string (that is, the model object) that it manages. Then, the view controller updates the text that’s
displayed in the label to reflect the change in the model object’s value.

Using Xcode, you can add an action to a Ul element and set up its corresponding action method by
Control-dragging from the element on the canvas to the appropriate part of a source file (typically, a class
extension in a view controller’s implementation file). The storyboard archives the connections that you
create in this way. Later, when the app loads the storyboard, the connections are restored.

1. If necessary, select Mainstoryboard.storyboard in the project navigator to display the scene on
the canvas.

2. In the Xcode toolbar, click the Utilities button to hide the utilities area and click the Assistant
Editor button to display the assistant editor pane.

The Assistant Editor button is the middle Editor button and it looks like this:)

3. Make sure that the Assistant displays the view controller’s implementation file (that is,
HelloWorldViewController.m)

If it Shows HelloWorldviewController.h instead, select HelloWorldviewController.m in the
project navigator.

4. On the canvas, Control-drag from the Hello button to the class extension in
HelloWorldViewController.m.

A class extension in an implementation file is a place for declaring properties and methods that are
private to a class. (You will learn more about class extensions in Write Objective-C Code.) Outlets
and actions should be private. The Xcode template for a view controller includes a class extension
in the implementation file; in the HelloWorld project, the class extension looks like this:

@interface HellowWorldViewController ()
@end

To Control-drag, press and hold the Control key while you drag from the button to the
implementation file in the assistant editor pane. As you Control-drag, you should see something
like this:

™ HelloWorld.xcodeproj — % MainStoryboard.storyboard e

*hone 5.1 Simulator | = | Xcods l = - | l:l (=in I =)
B s« > Mueo.) D RBE Q) View) | Button - H us | 4 » | (¢ m HelloWorldViewController.m No Selection |4 2 » (3 @

' y 17

| I Hello World View Controll. . // HelloworldViewController.m

== AL Ao { // Helloworld

a First Responder /

ite.h v () Hello World View Controller /¢ Copyright (c) 2012 Apple Computer. AlLl rights
Lm reserved.

v %ewr) /"

#inmport “"HelloWorldViewController.h"

Text Field - Your N
. Label - Label) Qinterface MelloWorldViewConteallar (1

o4 .* Insert Outlet, Action, or Outlet Collection
grjj R RN

L] Elaplenentation HelloWorlaViewController

‘~ (void)viewDidLoad
Your Name {super viewDidLoad);
// Do any additional setup after loading the view,
typically from a nib.
= (void)viewDidUnload
{
[super viewDidUnload);
Label // Release any retained subviews of the main view.
}
- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceDrientation)interfaceOrientation
{
return (interfaceOrientation !=
UllnterfacelrientationPortraitUpsideDown);

}

gend

Hello

When you release the Control-drag, Xcode displays a popover in which you can configure the
action connection you just made:

"D"Er | & LUPYILUnL L) L9Lls MPPLE LOmpUuLEr. ALL rign
reserved.
Connection | Outlet = /1
Object () Helle World View C... #import "HelloWorldViewController.h"
Name | | “ ginterface HelloWorldViewController ()
Type | UlButton [«] ;r gend
Storage ‘Weak =
) i @implementation HelloWorldViewController
Cancel Connect
- {void)viewDidLoad

Note: If you release the Control-drag somewhere other than in the class extension area of
HelloWorldViewController.m, you might see a different type of popover or nothing at all. If this
happens, click inside the view on the canvas to close the popover (if necessary) and try Control-
dragging again.

5. In the popover, configure the button’s action connection:
o Inthe Connection pop-up menu, choose Action.
o Inthe Name field, enter changeGreeting: (be sure to include the colon).

In a later step, you’ll implement the changeGreeting: method so that it takes the text that
the user enters into the text field and displays it in the label.

o Make sure that the Type field contains id.

The iq data type can represent any Cocoa object. You want to use id here because it
doesn’t matter what type of object sends the message.

o Make sure that the Event pop-up menu contains Touch Up Inside.

You specify the Touch Up Inside event because you want the message to be sent when the
user lifts the finger inside the button.

o Make sure that the Arguments pop-up menu contains Sender.

After you configure the action connection, the popover should look like this:

| kk Copyright {c) 2812 Apple Computer. ALl
reserved.

Connection | Action - /r
Object () Hello World View C...

#import "HelloWorldViewController.h"

Name |changeGreeting: |

= T @interface HelloWorldViewController ()
Type |id v |

Event | Touch Up Inside = ’r @end
Arguments | Sender : @implementation HelloWorldViewController

Cancel Connect - (void)viewDidLoad

Wanr Mama leiimar uiawMidl Asdls

6. In the popover, click Connect.

Xcode adds a stub implementation of the new changeGreeting: method and indicates that the
connection has been made by displaying a filled-in circle to the left of the method:

#import "HelloeWorldViewController.h"

@interface HelloWorldViewController ()
® - (IBAction)changeGreeting: (id)sender;

@end

When you Control-dragged from the Hello button to the class extension in
HelloWorldviewController.m file and configured the resulting action, you accomplished two things:
You added, through Xcode, the appropriate code to the view controller class (in
HelloWorldviewController.m), and you created a connection between the button and the view
controller. Specifically, Xcode did the following things:

e TOHelloWorldviewController.m, it added the following action method declaration to the class
extension:

- (IBAction)changeGreeting: (id) sender;
« and added the following stub method to the implementation area:

- (IBAction)changeGreeting: (id) sender {

}

« Note: 1BAction IS a special keyword that is used to tell Xcode to treat a method as an action for
target-action connections. 1Baction is defined to void.

e The sender parameter in the action method refers to the object that is sending the action message
(in this tutorial, the sender is the button).

« It created a connection between the button and the view controller.

Next, you create connections between the view controller and the two remaining Ul elements (that is, the
label and the text field).

Create Outlets for the Text Field and the Label

An outlet describes a connection between two objects. When you want an object (such as the view
controller) to communicate with an object that it contains (such as the text field), you designate the
contained object as an outlet. When the app runs, the outlet you create in Xcode is restored, allowing the
objects to communicate with each other at runtime.

In this tutorial, you want the view controller to get the user’s text from the text field and then display the
text in the label. To ensure that the view controller can communicate with these objects, you create outlet
connections between them.

The steps you take to add outlets for the text field and label are very similar to the steps you took when
you added the button’s action. Before you start, make sure that the main storyboard file is still visible on
the canvas and that He11loWorldviewController.m IS Still open in the assistant editor.

1. Control-drag from the text field in the view to the class extension in the implementation file.

As you Control-drag, you should see something like this:

[HelloWorld. xcodeproj — [B| MainStoryboard.storyboard "

Phone 5.1 Simulator El gt & IE

B |=ia s BB BB O [v [[TextField-YourName | = | 4 > | 0 m ; [@inerface HeboworidViewControlierd (4 2+ 3 B

i
ﬂllqllo\l'qud\l\‘.lwtnﬂltull...| Af HelloWorldViewContraller.m
J4 HelleWoerld
- First Responder i
weh v () Hello World View Comraller 4 Copyright (c) 2012 Apple Computer. ALL rights
em raserved,
v Wiew "
E || Button - Helle

ler.h

T B TextField - Your .., Fimpart "HelloWorldViewController k"
ram

| Label - Label J ginterface HelloWorldViewConteallar (1
Insert Outlet, Action, or Outler Collection

.r --JUS-.’-?'\. on)changelrect ings
P

—] ewmd

— @implementation HelloWorldviewController

Your Mg - {vaid)viewdidLosd
{

[super viewDidLoad];
J/f Do any additional setup after loading the view,
typically from a nib.

i {vaidiviewdidUnlood

L |
abe [super viewDidUnload);

A7 Belepse any retained subviews of the main view,
- {B00L)shouldAutorotateTolnterfaceOrientation:
{UlInterfaceOrientation) interfacelrientation
return {interfaceOrientation !=
UIInterfacelrientationPortraitUpsidebown);
1
® - {I8Action)changeGreeting: [id)sender {
}
@end

It does not matter where you release the Control-drag as long as it’s inside the class extension. In
this tutorial, the outlet declarations for the text field and the label are shown above the method
declaration for the Hello button.

2. Inthe popover that appears when you release the Control-drag, configure the text field’s
connection:
o Make sure that the Connection pop-up menu contains Outlet.
o Inthe Name field, type “textField”.

You can call the outlet whatever you want, but your code is more understandable when an
outlet name bears some relationship to the item it represents.

o Make sure that the Type field contains “UlTextField”.

Setting the Type field to “UlTextField” ensures that Xcode connects the outlet only to a
text field.

o Make sure that the Storage pop-up menu contains Weak, which is the default value.

You will learn more about strong and weak storage later, in Acquire Foundational
Programming Skills.

3. After you make these settings, the popover should look like this:

Jller | i LURY LYiIL L L) LELL MPRLE CUNPULEE] « MLL |

reserved.
Caonnection | Outlet B i
Object U Hello World Wiew C... #import "HelloWorldViewController.h"
J Name [textFieId l “_@interface HelloWorldViewController ()

Type |UlTextField v |
yp r(‘ - [IBAction)changeGreeting: {id)sender;
Storage | Weak =

@end
L d Cancel Connect

— @implementation HelloWorldViewController

4. Inthe popover, click Connect.
You accomplished two things by adding an outlet for the text field. Through this procedure:

o Xcode added appropriate code to the implementation file (Hel1oWorldviewController.m) Of the
view controller class.

Specifically, it added the following declaration to the class extension:

@property (weak, nonatomic) IBOutlet UITextField *textField;

Note: 1Routlet IS a special keyword that is used only to tell Xcode to treat the object as an outlet.
It’s actually defined as nothing so it has no effect at compile time.

o Xcode established a connection from the view controller to the text field.

By establishing the connection between the view controller and the text field, the text that the user
enters can be passed to the view controller. As Xcode did with the changeGreeting: method
declaration, it indicates that the connection has been made by displaying a filled-in circle to the
left of the text field declaration.

Note: Earlier versions of Xcode add an esynthesize directive in the implementation block for each
property you declare using the Control-drag approach. Because the compiler automatically synthesizes
accessor methods, these directives are unnecessary. You may safely delete them.

Now add an outlet for the label and configure the connection. Establishing a connection between the view
controller and the label allows the view controller to update the label with a string that contains the user’s
text. The steps you follow for this task are the same as the ones you followed to add the outlet for the text
field, but with appropriate changes to the configuration. (Make sure that He11oWorldviewController.m
is still visible in the assistant editor.)

1. Control-drag from the label in the view to the class extension in HelloWorldvViewController.m

in the assistant editor.
2. In the popover that appears when you release the Control-drag, configure the label’s connection:
o Make sure that the Connection pop-up menu contains Outlet.
o Inthe Name field, type “label”.
o Make sure that the Type field contains “UlLabel”.
o Make sure that the Storage pop-up menu contains Weak.
3. In the popover, click Connect.

At this point in the tutorial, you’ve created a total of three connections to your view controller:

e An action connection for the button
o An outlet connection for the text field
e An outlet connection for the label
You can verify these connections in the Connections inspector.

1. Click the Standard editor button to close the assistant editor and switch to the standard editor view.

The Standard editor button is the leftmost Editor button and it looks like this: =l

2. Click the Utilities view button to open the utilities area.
Select Hello World View Controller in the outline view.
4. Show the Connections inspector in the utilities area.

w

The Connections inspector button is the rightmost button in the inspector selector bar, and it looks
like this: @

In the Connections inspector, Xcode displays the connections for the selected object (in this case, the view
controller). In your workspace window, you should see something like this:

|
" 4
5
Editor Wiew Organizer
D B B 9 Loy
¥ Triggered Segues
manual {:}
¥ Outlets
(label — ® Label - Label ® |
searchDisplayController {:}
(" textField (= Text Field - Yo... @)
[view H View .@,I
¥ Presenting Segues
custom O
modal O
push {:_'}
relations hip {:}
¥ Referencing Outlets
Mew Referencing Qutlet O
¥ Referencing Outlet Collections
New Referencing Outlet Collection {:}
¥ Received Actions
[changeGreeting: # Button - Hello
Touch Up Inside

You’ll see a connection between the view controller and its view, in addition to the three connections you
created. Xcode provides this default connection between the view controller and its view; you do not have
to access it in any way.

Make the Text Field’'s Delegate Connection

You have one more connection to make in your app: You need to connect the text field to an object that
you specify as its delegate. In this tutorial, you use the view controller for the text field’s delegate.

You need to specify a delegate object for the text field. This is because the text field sends a message to
its delegate when the user taps the Done button in the keyboard (recall that a delegate is an object that acts
on the behalf of another object). In a later step, you’ll use the method associated with this message to
dismiss the keyboard.

Make sure that the storyboard file is open on the canvas. If it’s not, select MainStoryboard.storyboard
in the project navigator.

1. Inthe view, Control-drag from the text field to the yellow sphere in the scene dock (the yellow
sphere represents the view controller object).

When you release the Control-drag, you should see something like this:

I HelloWorld.xcodeproj — [% MainStoryboard.storyboard e

m l:; Fisvshed ruaning HelloWorld on iPhone 5.0 Simulato 1 E B a‘ m -@]
=o @ s« > 50 B BB O Vew | [Text Field - Your Name | D B &8 % 2 0|

d ¥ Storyboard Segues
SSDK5.0 [Hello Werld View Controll ! t-:?» .
wid af..-u Responder pads
Wolegateh || o) Heilo World View Comt e

W egate.m v

elole

¥ Ouvess
- O eyae
¥ Sent Events

View

O

W._troller.n

Button - Mello
W_.roller.m D £06 On Exir
Label - Label
oeting Files - Eating Ourges

orks Eotng D Segn
Your Nanmw Eoting Did ind
Towcs Cancel
Towch Down
Towe™ Down Repesr
Label Towch Drag Ercer
Towch Drag Exn
Towch Drag tngide
Towch Drag Oumice
Towch Up Mnside
Towsch Up Ostside
| Vadws Cranged
¥ Referencing Outlets
- (et — = Mo Work Vie
Wew Baferenceg Ostier -
¥ Referencing Outiet Coﬂp(ﬁoﬂs
| toew Raferancing Ovtiet Colecen

s

Q0000000 CO000O)

Ol O®

: D {J]|l@el =
| Hello Al ossects. :| (8tlE]
> View Controfler - A controfer that

Supports the fusdamental view-
management model in ithone 05

Table View Controller - A controler
that manages & table view.

Navigation C flar - A
That Manages navigation through a
Nerarchy of views.

Hello World V
Tab Bar Controller - A controfier that

mansnet s set of view rontmiines that

2. Select de1egate in the Outlets section of the translucent panel that appears.
Prepare the App for Accessibility

The i0S operating system provides a host of features that help make apps accessible to all users,
including those with visual, auditory, and physical disabilities. By making your app accessible, you open
it up to millions of people who would otherwise not be able to use it.

A major accessibility feature is VoiceOver, Apple’s innovate screen-reading technology. With
VoiceOver, users can navigate and control the parts of an app without having to see the screen. By
touching a control or other object in the user interface, users can learn where they are, what they can do,
and what will happen if they do something.

You can add several accessibility attributes to any view in your user interface. These attributes include the
current value of the view (such as the text in a text field), its label, a hint, and a number of traits. For the
HelloWorld app, you are going to add a hint to the text field.

Note: Any accessibility text that you add should be localized. To learn how to do this, see
Internationalize Your App in App Design.

1. Select the storyboard file (base internationalization) in the project navigator.
2. Select the text field.
3. In the Accessibility section of the Identity inspector, type “Type your name” in the Hint field.

and : HelloWorld. xoodepraj — = MainStoryboard storyboard g
N N — P — —n =
I\:A 'i‘:": | H.. iPhome 6.0 Sim. [=] Finilaberd runmin g HilloWaild o iPhass 6.0 Simadars] E H En, =

| Ruw SEop SrherTe Breakpoints. LA Editor Wiew Organizer |
| |min ® 4 = = B B A b | PR e 70 1 B0 00 r [[View [|Text Field - Your Nasoe | D B @i+ & |

[y Maliciarld ¥ Mser Defined Runtime Abiritsstes
B o Gisoxo e e e o o e v

¥ HellgWarld w L) Hello World View Controller
h| HelleWoridAspDelegate.h - i - +
m HelloWorldAsaDelegate.m > Label
¥ MainStoryboard. storyboard Button - Hello + =
| B ! d
{ | Sroryboard storybo i | :‘ ¥ Document
MainSroryboand strings {ORiree)

» 1= gt n " skl
h| HelletwaridviewConralier h (&) Comstramn Labl| Xoode Seecific Labe
. HellcWarkdyiewCortralier m F i Raspomcer
port By Exn
M Sviiiuhigl Object 1D Pi-FE-COF
| HelioWorid-Infouplist

Lock | Inhevited - (voshingh :
L4 InfoPlisr.strings L]

inleMisLatring (Ersglah) Hotey | B]]
InfePlistatrings {Chirsia) Mo Font [il]
m main.m
th| MielloWorid-Prefix pch
» __ Frareworks ¥ Accessibilicy
* L Producs hcensuibibty & Enabied
Lab]
Hint| Type your name
Traits || Bution Linfi.
Image Selected
_| Suatic Text
- Search Fiekd
| Hello] Plays Sound
. . Keyboard Key

Summary Bement
_| Updates Frequently

S e e | e
+ 0@ F (= - O {} || =

Test the App

Click Run to test your app.

You should find that the Hello button becomes highlighted when you click it. You should also find that if
you click in the text field, the keyboard appears and you can enter text. However, there’s still no way to
dismiss the keyboard. To do that, you have to implement the relevant delegate method. You’ll do that in
the next chapter. For now, quit Simulator.

Implementing the View Controller

There are several parts to implementing the view controller: You need to add a property for the user’s
name, implement the changeGreeting: method, and ensure that the keyboard is dismissed when the user
taps Done.

Add a Property for the User’s Name

You need to add a property declaration for the string that holds the user’s name, so that your code always
has a reference to it. Because this property should be public—that is, visible to clients and subclasses—
you add this declaration to the view controller’s header file, HelloWorldviewController.h. Public
properties indicate how you intend objects of your class to be used.

A property declaration is a directive that tells the compiler how to generate the accessor methods for a
variable, such as the variable used to hold the user’s name. (You’ll learn about accessor methods after you
add the property declaration.)

At this point in the tutorial, you don’t need to make any further changes to the storyboard file. To give
yourself more room in which to add the code described in the following steps, hide the utilities area by
clicking the Utilities View button again (or by choosing View > Utilities > Hide Utilities).

1. In the project navigator, select HelloWorldviewController.h.

2. Before the eend statement, write an eproperty Statement for the string.
The property declaration should look like this:

@property (copy, nonatomic) NSString *userName;

You can copy and paste the code above or you can type it into the editor pane. If you decide to
type the code, notice that Xcode suggests completions to what you’re typing. For example, as you
begin to type eprop. .. Xcode guesses that you want to enter eproperty, SO it displays this
symbol in an inline suggestion panel that looks similar to this:

#import <UIKit/UIKit.h=

@interface HelloWorldViewController : UIViewController

@proplrty
~ @property

If the suggestion is appropriate (as it is in the example shown above), press Return to accept it.

As you continue to type, Xcode might offer a list of suggestions from which you can choose. For
example, Xcode might display the following list of completions as you type nsstr. . .:

#import <UIKit/UIKit.h=
@interface HelloWorldViewController : UIViewController

@property (copy,nonatomic) NSStream

(1) @end

NSStreamEvent
NSStreamStatus

[E] NSString
NSStringCompareOptions

[E NsSStringDrawingContext

NSStringDrawingOptions
NSStringEncoding
NSStream is an abstract class for objects representing streams. Its

interface is common to all Cocoa stream classes, including its
concrete subclasses NSInputStream and NSOutputStream. More. ..

When Xcode displays a completion list, press Return to accept the highlighted suggestion. If the
highlighted suggestion isn’t correct (as is the case in the list shown above), use the arrow keys to
select the appropriate item in the list.

The compiler automatically synthesizes accessor methods for any property you declare. An accessor
method is a method that gets or sets the value of an object’s property (sometimes, accessor methods are
also called “getters” and “setters”). For example, the compiler generates declarations of the following
getter and setter for the username property you just declared, along with their implementations:

e - (NSString *)userName;
e - (void)setUserName: (NSString *)newUserName;

The compiler also automatically declares private instance variables to back each declared property. For
example, it declares an instance variable named userName that backs the username property.

Note: The compiler adds the accessor methods that it generates to the compiled code; it does not add them
to your source code.

Implement the changeGreeting: Method

In the previous chapter, “Configuring the View,” you configured the Hello button so that when the user
taps it, it sends a changeGreeting: message to the view controller. In response, you want the view
controller to display in the label the text that the user entered in the text field. Specifically, the
changeGreeting: method should:

e Retrieve the string from the text field and set the view controller’s userName property to this
string.
o Create a new string that is based on the userName property and display it in the label.

1. If necessary, select HelloWorldviewController.m in the project navigator.

You might have to scroll to the end of the file to see the changeGreeting: stub implementation
that Xcode added for you.

2. Complete the stub implementation of the changeGreeting: method by adding the following
code:

- (IBAction)changeGreeting: (id) sender {
self.userName = self.textField.text;

NSString *nameString = self.userName;

if ([nameString length] == 0) {
nameString = @"World";

}

NSString *greeting = [[NSString alloc] initWithFormat:@"Hello, %@!",
nameString];

self.label.text = greeting;

There are several interesting things to note in the changeGreeting: method:

e self.userName = self.textField.text; retrieves the text from the text field and sets the view
controller’s userName property to the result.

In this tutorial, you don’t actually use the string that holds the user’s name anywhere else, but it’s
important to remember its role: It’s the very simple model object that the view controller is
managing. In general, the controller should maintain information about app data in its own model
objects—app data shouldn’t be stored in user interface elements such as the text field of the
HelloWorld app.

e NSString *nameString = self.userName; Creates a new variable (of type nsstring) and sets
it to the view controller’s userName property.

e @"World" iSa string constant represented by an instance of Nsstring. If the user runs your app
but does not enter any text (that is, [nameString length] == 0), namestring Will contain the
string “World”.

e The initwithFormat: method is supplied for you by the Foundation framework. It creates a new
string that follows the format specified by the format string you supply (much like the printf
function of the ANSI C library).

In the format string, se acts as a placeholder for a string object. All other characters within the
double quotation marks of this format string will be displayed onscreen exactly as they appear.

Configure the View Controller as the Text Field’s Delegate

If you build and run the app, you should find that when you click the button, the label shows “Hello,
World!” If you select the text field and start typing on the keyboard, though, you should find that you still
have no way to dismiss the keyboard when you’re finished entering text.

In an i10S app, the keyboard is shown automatically when an element that allows text entry becomes the

first responder; it is dismissed automatically when the element loses first responder status. (Recall that the

first responder is the object that first receives notice of various events, such as tapping a text field to bring

up the keyboard.) Although there’s no way to directly send a message to the keyboard from your app, you
p y g y y g y y pp, ¥y

can make it appear or disappear as a side effect of toggling the first responder status of a text-entry Ul
element.

The urTextFieldDelegate protocol is defined by the UIKit framework, and it includes the
textFieldShouldReturn: method that the text field calls when the user taps the Return button
(regardless of the actual title of this button). Because you set the view controller as the text field’s
delegate (in “To set the text field’s delegate™), you can implement this method to force the text field to
lose first responder status by sending it the resignFirstResponder message—which has the side effect
of dismissing the keyboard.

Note: A protocol is basically just a list of methods. If a class conforms to (or adopts) a protocol, it
guarantees that it implements the required methods of a protocol. (Protocols can also include optional
methods.) A delegate protocol specifies all the messages an object might send to its delegate.

1.

2.

3.

If necessary, select HelloWorldviewController.m in the project navigator.
Implement the textFieldshouldReturn: method in the HelloWorldviewController.m file.

The method should tell the text field to resign first responder status. The implementation should
look something like this:

- (BOOL) textFieldShouldReturn: (UITextField *)theTextField {
1if (theTextField == self.textField) {
[theTextField resignFirstResponder];
}

return YES;

In this app, it’s not really necessary to test the theTextField == self.textField eXpression
because there’s only one text field. This is a good pattern to use, though, because there may be
occasions when your object is the delegate of more than one object of the same type and you
might need to differentiate between them.

Select HelloWorldviewController.h In the project navigator.

http://developer.apple.com/library/ios/referencelibrary/GettingStarted/RoadMapiOS/chapters/RM_YourFirstApp_iOS/Articles/05_ConfiguringView.html#//apple_ref/doc/uid/TP40011343-TP40012323-CH7-SW12

4. Totheendofthe cinterface line, add <uITextFieldDelegate>.
Your interface declaration should look like this:

@interface HelloWorldViewController : UIViewController <UITextFieldDelegate>

This declaration specifies that your HelloworldviewController class adopts the
UITextFieldDelegate protocol.

Test the App

Build and run the app. This time, everything should behave as you expect. In Simulator, click Done to
dismiss the keyboard after you have entered your name, and then click the Hello button to display “Hello,
Your Name!” in the label.

Troubleshooting and Reviewing the Code

If you are having trouble getting your app to work correctly, try the problem-solving approaches
described in this chapter. If your app still isn’t working as it should, compare your code with the listings
shown at the end of this chapter.

Code and Compiler Warnings

Your code should compile without any warnings. If you do receive warnings, it’s recommended that you
treat them as very likely to be errors. Because Objective-C is a very flexible language, sometimes the
most you get from the compiler is a warning.

Check the Storyboard File

As a developer, if things don’t work correctly, your natural instinct is probably to check your source code
for bugs. But when you use Cocoa Touch, another dimension is added. Much of your app’s configuration
may be “encoded” in the storyboard. For example, if you haven’t made the correct connections, your app
won’t behave as you expect.

o If'the text doesn’t update when you click the button, it might be that you didn’t connect the
button’s action to the view controller, or that you didn’t connect the view controller’s outlets to the
text field or label.

o If the keyboard does not disappear when you click Done, you might not have connected the text
field’s delegate or connected the view controller’s textField outlet to the text field. Be sure to
check the text field’s connections on the storyboard: Control-click the text field to reveal the
translucent connections panel. You should see filled-in circles next to the de1egate outlet and the
textField referencing outlet.

If you have connected the delegate, there might be a more subtle problem (see the next section,
“Delegate Method Names”).

Delegate Method Names

A common mistake with delegates is to misspell the delegate method name. Even if you’ve set the
delegate object correctly, if the delegate doesn’t use the right name in its method implementation, the
correct method won’t be invoked. It’s usually best to copy and paste delegate method declarations, such
as textFieldshouldReturn:, from the documentation.

Code Listings

This section provides listings for the interface and implementation files of the
HelloWorldviewController class. Note that the listings don’t show comments and other method
implementations that are provided by the Xcode template.

The Interface file: HelloWorldViewController.h
#import <UIKit/UIKit.h>

@interface HelloWorldViewController : UIViewController <UITextFieldDelegate>
@property (copy, nonatomic) NSString *userName;

@end

The Implementation File: HelloWorldViewController.m
#import "HelloWorldViewController.h"

@interface HelloWorldViewController ()

@property (weak, nonatomic) IBOutlet UlITextField *textField;
@property (weak, nonatomic) IBOutlet UILabel *label;

- (IBAction)changeGreeting: (id) sender;
@end
@implementation HelloWorldViewController

- (void)viewDidLoad
{
[super viewDidLoad];

// Do any additional setup after loading the view, typically from a nib.

(BOOL) shouldAutorotateToInterfaceOrientation: (UIInterfaceOrientation)interfaceOrienta
tion

{

return (interfaceOrientation != UIllInterfaceOrientationPortraitUpsideDown) ;

- (IBAction)changeGreeting: (id) sender {

self.userName = self.textField.text;
NSString *nameString = self.userName;
if ([nameString length] == 0) {
nameString = @"World";
}
NSString *greeting = [[NSString alloc] initWithFormat:@"Hello, %@Q@!"™, nameString];

self.label.text = greeting;

- (BOOL) textFieldShouldReturn: (UITextField *)theTextField {

if (theTextField == self.textField) {
[theTextField resignFirstResponder];
}

return YES;

@end

