
© 2012 Mobile App Mastery

 Beginning Objective-C Programming - 2

Forward! 4

Introduction! 4

Chapter One: Introduction to Programming! 6

Chapter Two: If-Statements! 15

Chapter Three: Switch Statements! 24

Chapter Four: Loops ! 33

Chapter Five: Functions! 39

Chapter Six: Object-Oriented Programming! 54

Chapter Seven: Introduction To Foundation & UIKit! 64

Chapter Eight: Essential Foundation Classes ! 77

Chapter Nine: How To Create Your Own Classes! 89

Chapter 10: Extending Classes with Categories ! 102

Chapter 11: Protocols In Objective-C ! 107

Chapter 12: Key-Value Coding (KVC)! 110

 Beginning Objective-C Programming - 3

Forward

A little over ten years ago, I had just started learning object-oriented

programming after spending a few years as a mental health counselor (yes,

really!). What I had initially thought would be a dry and technical topic based on

my days at the university turned out to be the key to an intriguing hidden world of

codes and virtual universes.

Programming is the key to an intriguing hidden world of codes and virtual

universes

What was really cool was that since computers had become so powerful and

could be found everywhere in our world, programmers had suddenly become

creators. Learning object-oriented programming quickly opened up my career
while I was working at my 9-5 in ways a psychology major would never expect.

Programming also served as my escape route once I decided to leave my 9-5 job

and start my own company. All these things are why I want to share this exciting

world of programming with you in this book, Beginning Objective-C

Programming.

Introduction

The focus of Beginning Objective-C Programming is to teach basic
programming in the simplest way possible. Furthermore, this book is geared

toward people who want to eventually make iOS and Mac apps and so starts

 Beginning Objective-C Programming - 4

from the beginning teaching you using XCode 4.2 and iOS 5 which are the latest

technologies available.

My hope is that this book will be the first place you will look when you are ready

to learn the programming skills you will need to master the iOS SDK so you can

make your own app down the road.

 Beginning Objective-C Programming - 5

Chapter One: Introduction to Programming

Programming is the process of giving instructions to a

computer. Apps on your iPhone work because someone

took the time to write instructions that have been

packaged into an app that you download and use on your

iPhone.

Here’s an example of how you would give instructions to an iPhone app. The

code below will show us a alert that says Hello World:

UIAlertView *alertView = [[UIAlertView alloc] initWithTitle:@"Alert View"
 message:@"Hello World"
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
[alertView show];

The code above will present an alert view to the user with the text Hello World.

See figure 1.1 below for an example.

 Beginning Objective-C Programming - 6

Figure 1.1 - Hello World

These instructions probably don’t make much sense to you yet but that’s ok –

this book is all about how you can use instructions like this to get things done in

your apps.

Programming Languages

Programming languages are used to communicate instructions to computers like

the iPhone. Like natural languages, programming languages have a vocabulary

and must follow certain rules. We must follow these rules strictly so that a

computer can understand what we intend.

Writing instructions with programming languages is called coding or sometimes

simply writing code. Coding for iOS apps takes place with an editor called XCode

that is specifically tailored to make writing code easier. The programming

 Beginning Objective-C Programming - 7

language that we will be using and learning about is called Objective-C. The first

half of this book is about learning the rules and vocabulary of Objective-C

because that is what iPhone apps are made of.

Programming Essentials

Let’s go over some the essential rules and things you can do with programming.

Code Execution

Code execution refers to when instructions are given to the computer.

Computers execute instructions one at a time as they are received. When you are

looking at a screen full of code, each line of code will get executed one at a time

from top to bottom in the same way a person would read a book. Top to bottom.

Left to right.

A line of code is an instruction that is ended by a semi-colon ;

For example:

[alert show];

It is very important to remember the semi-colon when you end a line of code.

Code Regions

 Beginning Objective-C Programming - 8

Code regions are used to separate a set of instructions from the rest of the

program. You will see this in different contexts as you learn programming but the

general idea is that code that is in a code block belongs together. Code regions

start with a left curly brace { and end with a right curly brace }.

Here is an example of curly braces defining a code region:

if(alertView){
! NSLog(@"UIAlertView was used");
! NSLog(@"as an example");
! NSLog(@"and it was great.");
}

Code Documentation

As you get into coding you may start to lose track of what your code was

supposed to do. One way to remind yourself what you were trying to accomplish

is to document your code. This just means to write a short note called a

comment that is included with the rest of your code.

This code comment will let others know what you were intending on doing but it

won’t be considered an instruction to the computer. Code comments are ignored.

You can use a comment anywhere in your program by enclosing your comment

text with these characters: /* and */.

Here is an example of code documentation:

/* This program is going to calculate monthly loan payments
for auto loans with different interest rates and payment schedules */

 Beginning Objective-C Programming - 9

This type of documentation works best when applied to a big section of your

program where we want to remember what the broad overview of what we are

doing. To document smaller pieces of your program it is better to apply this

notion of self-documentation. What we mean by self-documentation is that the

words we choose for each piece of the program should describe what are

intentions were. For example, take a look at these two lines of code:

float x = 199;
float interestRate = 4.25;

Even though you do not know the programming syntax that we are using here yet

I bet that you can guess what the second line of code is supposed to be. The

programmer probably choose the word interestRate because the code had

something to do with interest rates right? Who knows what x is supposed to be?

Compared to x, interestRate is much more meaningful. Hopefully, if you

remember to write your code like you will save yourself some work down the

road.

Debugging

Debugging is the process of finding mistakes in your code and fixing them. In

practice, more time is spent on debugging than coding itself. Generally, when I

am writing some code I will quick type it out and then try to run the program, see

if what I did works and then test the results. Usually, I will need to go back and fix

something. In fact, I would say that most programmers spend 90% of their

 Beginning Objective-C Programming - 10

programming time debugging. This is why I want to now show you how XCode

makes this process as painless as possible for us.

Debugger Screens

The debugger is a special area in XCode that has the tools you need to debug

your program. To see the debugger select View > Debug Area > Show

Debugger Area. You should see a screen like Figure 1.2 appear at the bottom of
XCode.

Figure 1.2 - XCode Debugger

In figure 1.2 you can see that I marked the most important sections of the

debugger. Area 1 is used to control the app’s execution when it is running in the

 Beginning Objective-C Programming - 11

simulator. You can pause and resume the app. This figures in more when we talk

about setting breakpoints below. You use area 2 to inspect your code while the

app is executing. This is what you use when you want to see what is happening

while your app is running.

The area marked 3 is the console. This is a special window that the program will

write messages to giving us status updates. We can write message to this

window ourselves using NSLog. In area 4 you will find a control that you can use

to show or hide the various debugger panes.

NSLog

NSLog is used to write messages to the console screen. This is a simple way to
see what is going on in your program and it is also a way to produce output.

Output is simply information created by our program and presented to us. You

use NSLog like this:

NSLog(@"This is my message");

Everything that you include in the parenthesis will be printed out to the console.

You can also include substitute other items into your NSLog messages. What
you need to do is insert special placeholders into your NSLog messages followed

by a comma-separated list of things to substitute into your message. For

instance, if we wanted to add our alert object from the Hello World example into

our message we would do this:

 Beginning Objective-C Programming - 12

NSLog(@"This is my alert object: %@", alert);

Setting Breakpoints

Breakpoints are flags that you can attach to a line of code that will stop your app

from executing when that line of code is reached. When the app stops you get a

chance to use the debugger screen to look at your code to see what is going on.

To set a breakpoint all you need to do is click in the gutter (the area right to the

left of the code editor). The gutter is the area marked in red in figure 1.3. Also, if

you look closely you will see a blue icon which is an example of a breakpoint.

Figure 1.3 - Breakpoints and the Gutter

 Beginning Objective-C Programming - 13

Now when I build and run this app everything will stop when the program

reaches the blue breakpoint. If I look at the debugger screen I’ll see tons of

information about my program in it’s current state and I will see the message I

wrote to the console screen.

You can see all kinds of information on this screen, as you learn more about

programming it will become more meaningful to you.

Summary

Programming is how we get computers to do the tasks required for iPhone apps.

The thing with programming is that we need to be very literal and strictly follow

the rules of the programming language that we are using to get our work done.

XCode is the tool that Apple provides developers to help us get our work done

and becoming intimately familiar with this tool will help you out a lot. In the next

chapter we start going over the essential programming rules that we use to get

things done in iPhone apps.

Please note that this chapter is just an introduction to the tools and general

process of programming. The remaining chapters of this book will make the

process of programming much clearer so please stick with me and jump right

into chapter two where we talk about if statements.

 Beginning Objective-C Programming - 14

Chapter Two: If-Statements

If statements are used to execute code based on whether

a condition is present in the state of the program. Simply

put, an if statement is a way for us to tell a computer to do

something if a condition is met and something else if the

condition is not met. Below is the general form that an if

statement takes.

BOOL condition = YES;
if(condition){
 //take action when condition is YES
}
else{
 //take action when condition is NO
}

The if statement above has three important components: the test to see if the

condition is true, the code that will execute if the condition is true and the code

that will execute if the condition is false.

BMI Calculator Example

Let’s take a look at how an if statement works in the context of something you

might find in a real iPhone app like MyNetDiary or LoseIt!. The example that I am

thinking of is a BMI calculator. BMI stands for Body Mass Index. BMI is a statistic

used to determine if you are underweight, normal weight, overweight or obese.

 Beginning Objective-C Programming - 15

This statistic is included in many health apps because it is used to determine if

someone is at risk of developing health conditions like heart disease.

To calculate BMI you need to know your height and weight. The formula for BMI

is weight divided by height squared. Once you have calculated BMI you can

figure out whether you are underweight, normal weight, overweight or obese

based on your BMI value.

BMI Weight Status

Below 18.5 Underweight

18.5-24.9 Normal

25-29.9 Overweight

30 & Above Obese

What we are going to do in our program is first write code to figure out BMI based on height and
weight values that a user will supply to us. Then we will use an if statement to find out
whether the BMI stat indicates that the person is underweight. Let’s declare the variables that
we need now and set some initial values so that we can test.
float heightInMeters = 1.8796;
float weightInKilograms = 117.934016;
float BMI;

Now we can add in the BMI calculation and assign the result to the BMI float

variable.

float heightInMeters = 1.8796;
float weightInKilograms = 117.934016;
float BMI;

BMI = weightInKilograms / (heightInMeters * heightInMeters);

 Beginning Objective-C Programming - 16

The result that we get with the test data above is 33.3816795. Now what we want

to do is compare our BMI statistic with the value from the table above. If our BMI

is under the value that determines if we are underweight then our app will do one

thing like print out relevant health information. Otherwise, the app will assume for

now that the BMI is within normal range.

Relational And Equality Operators

To make this assessment we will need to evaluate the condition using relational

and equality operators. These operators are used to evaluate expressions and

we include these in the parenthesis after the if keyword in an if statement. Some
of the expressions that you can evaluate are equal to, greater than, less than and

not equal to. Here are the operators that you have available to you.

Operator Meaning

== Equal To

!= Not Equal To

> Greater Than

< Less Than

>= Greater Than Or Equal To

<= Less Than Or Equal To

Since all we need to do for now is determine whether our BMI is underweight or

not we can simply use the less than operator < in our if statement.

 Beginning Objective-C Programming - 17

float heightInMeters = 1.8796;
float weightInKilograms = 117.934016;
float BMI;

BMI = weightInKilograms / (heightInMeters * heightInMeters);

if(BMI < 18.5){
 //execute if the BMI indicates the person is underweight
}
else{
 //execute if the BMI seems normal (not underweight)
}

If we were writing this app for real we would replace the comments in the if

statement above with code that would communicate something of value to the

user. The values I supplied above would cause the if statement to execute the

code after the else keyword, but the real result would depend on what the user
actually enters into the app when it is being used.

Scope

When you need to include more than one line of code as a consequence for an if

statement then you must define the scope for a region of code. In programming,
scope refers to a region of code that is separated from the rest of the code in the

program. This means that variables declared from within that region can only be

used inside of that region. Scope is defined with curly braces: a left curly brace

defines the beginning of a region of code, and a right curly brace defines the end

of a region of code.

In the if statements that we have seen so far the code that executes is always

contained in the area constrained by the curly braces to the right of the condition

that we evaluate and also right after the else keyword where we put the code
that evaluates when the condition is not met.

 Beginning Objective-C Programming - 18

The thing to remember about scope is that variables that you declare within a

region of code can only be used from within that region or from regions of code

contained by the parent region. So if you declare a variable in the region of code

like the block right after the else keyword you can only use that variable from

within that region of code. If you try to use in further down in your program you

will get an error warning.

Nested If Statements

So far our BMI example is incomplete since we only have one if statement that is

testing whether we are underweight or not. If we were putting something like this

into our own app our users would probably want to know what to do if they fell

into one of the other categories as well. To get this done we will need to use

more if statements.

This referred to as using nested if statements. Nested if statements are used

when you need to include more if statements to further test the conditions

present in the program. You can use nested if statements by including them in

the regions of code after you evaluate your expressions. The general form that

this takes looks like this:

BOOL condition = YES;
BOOL anotherCondition = NO;

if(condition){
 //take action when condition = YES
 if(anotherCondition){
 //take action when
 //anotherCondition = YES
 }
 else{
 //take action when
 //anotherCondition = NO

 Beginning Objective-C Programming - 19

 }
}
else{
 //take action when condition = NO
 if(anotherCondition){
 //take action when
 //anotherCondition = YES
 }
 else{
 //take action when
 //anotherCondition = NO
 }
}

The example above has new if statements listed in both areas were we can

include code. You can nest as many if statements as you need in code. In order

to manage the complexity of your code though I would not recommend using

more than three layers of nested if statements.

To apply these statements to our BMI example we will need to add a nested if

statement to the region of code after the else keyword. What we want to do is
test to see if BMI statistic indicates whether the person is normal weight.

float heightInMeters = 1.8796;
float weightInKilograms = 117.934016;
float BMI;

BMI = weightInKilograms / (heightInMeters * heightInMeters);

if(BMI < 18.5){
 //execute if the BMI indicates the person is underweight
}
else{
 //execute if the BMI is not underweight

 if(BMI >= 18.5 && BMI <= 24.9){
 //execute if the BMI indicates the person is normal weight
 }
 else{
 //execute if the BMI is not underweight

 Beginning Objective-C Programming - 20

 //or normal weight
 }

}

If you take a look at the if statement condition in the nested if statement you will

see that it is bit more complex that the first if statement. We need to determine if

the BMI is in a range and to do that we need to employ the logical operator

AND which uses the symbol &&. && means AND so we use it when we want to
evaluate two conditions both of which must be true in an if statement.

To finish our example we would continue to nest if statements. Our finished

product becomes fairly complex when we attempt to include every possibility.

float heightInMeters = 1.8796;
float weightInKilograms = 117.934016;
float BMI;

BMI = weightInKilograms / (heightInMeters * heightInMeters);

if(BMI < 18.5){
 //execute if the BMI indicates the person is underweight
}
else{
 //execute if the BMI is not underweight
 if(BMI >= 18.5 && BMI <= 24.9){
 //execute if the BMI indicates the person is normal weight
 }
 else{
 //execute if the BMI is not underweight
 //or normal weight
 if(BMI >= 25 && BMI <= 29.9){
 //execute if the BMI means the person is over weight
 }
 else{
 //execute if the BMI is obese
 }
 }
}

 Beginning Objective-C Programming - 21

Logical Operators

In the example above we used the logical operator && because we wanted to
make sure that both conditions that we were evaluating were true. We have two

more logical operators that we can use in if statements. These two operators

are ! and ||which mean NOT and OR respectively.

The NOT operator is used to reverse the outcome of a condition. So, if your
condition normally would evaluate to false but you wanted it to evaluate to true

you could put !in front of the condition to achieve this. That may look something
like this:

BOOL isTrue = YES;
if(!isTrue){
 //this would execute when isTrue == NO
}
else{
 //this would execute when isTrue == YES
}

The OR operator || is used when we want to evaluate a condition when at least
one of the conditions is true. In this example I am imagining writing code to test

to see if I can get my email or not. I know that to do that I would need to either

have a cell coverage or access to a wifi network so this is a perfect time to use

the OR operator.

BOOL hasWifi = NO;
BOOL hasCellCoverage = YES;

if(hasWifi || hasCellCoverage){
 //I can get my email since I have
 //either cell coverage or wifi

 Beginning Objective-C Programming - 22

}
else{
 //no email since I am not connected
}

Hands-On Time

Expand on the idea of creating an app in the health niche by adding information

about blood pressure and waist size. Use what you learned in the last chapter to

first create a composite type definition that is composed of primitive types to

described these attributes: BMI, diastolic blood pressure, systolic blood pressure

and waist size. Also include a BOOL variable type called flag to help keep track
of whether the person has any warning signs.

Look up the criteria for each of these attributes that may indicate an unusual

measurement and use if statements to screen the data for people who may have

warning signs for health problems. Use the BOOL variable flag to keep track of
whether the data indicates that a person should consult a doctor about their

health.

For a real challenge, add the dimension of gender and make sure to apply the

appropriate criteria for each gender in your analysis.

 Beginning Objective-C Programming - 23

Chapter Three: Switch Statements
Switch statements are used when we want to execute
different bits of code based on the value of an integer

variable. While the if statement from the last chapter gave
us two options (either the condition was met or it wasn’t),

switch statements give us a way to conditionally execute
code with more than two possibilities. Here is the general

form that the switch statement takes.

int level = 0;

switch (level) {
 case 0:{
 //execute code when level == 0
 break;
 }
 case 1:{
 //execute code when level == 1
 break;
 }
 case 2:{
 //execute code when level == 2
 break;
 }
 default:{
 //execute code if level does not
 //meet any of the conditions above
 break;
 }
}

The switch statement above has three major components: the first is the
expression that we are evaluating. In this case, we’re checking the value of the

integer variablelevel. The second component is a series of case statements that
correspond to each possible value of the expression. Each case will include the

 Beginning Objective-C Programming - 24

keyword case, followed by the expression that corresponds to the case, and a
colon. Everything after the colon is code that will execute when the expression

evaluates to the integer for thatcase. In the example above, the code after case

0 and before the first break will execute, because the current value of level is 0.

If you changed the value of level, a different case would be executed.

break statements mark the end of the code that will execute for a case. By

putting abreak statement in a case you make sure that any remaining code in

the switch statement will not execute.

The last part of the switch statement is a special type of case called default.

This appears after the case statements, and works in a similar way. The main

difference is that default does not have a value associated with it-the code after
default will only execute when the expression does not correspond to any of the

values in the case statements.

Finding the Area of a Shape with switch

Let’s see how a switch statement might work in a real application. Imagine that
we had an app that figured out the area of a shape for us. We don’t know

beforehand what type of shape we’re dealing with, and since there are different

rules to compute the area of different shapes we’ll need to use different code to

compute the area for each type of shape we’ll support.

This is a good time to use a switch statement. In our real app we would ask the
iPhone user what type of shape they wanted to compute the area for. Then we

would use a switch statement to execute the appropriate code based on the
user’s choice. In this example, we’ll just use default values for our shape and

 Beginning Objective-C Programming - 25

other parameters since we have not yet learned how to ask the user for input. Of

course, in a real program we would need to ask the user both for the type of

shape as well as the relevant input parameters.

The first thing we will need is two variables: the first will be an integer that will

represent the shape the user is interested in, and the second will be a float that

will hold the shape’s area.

int shape = 2;
//0 == Square, 1 == Parallelogram
//2 == Triangle, 3 == Circle

float area;

As you can see from the comments, we are going to support four types of

shapes: squares, parallelograms, triangles, and circles. Next, let’s fill in the

skeleton of ourswitch statement. What we need now is to start the switch

statement. We’ll start with the default case, which in this example means the

user specified an unsupported shape. If this happens, we’ll assign -999 to the

area variable:

int shape = 2;
//0 == Square, 1 == Parallelogram
//2 == Triangle, 3 == Circle

float area;

switch (shape) {
 default:{
 //Set to negative number if
 //no shape is specified
 area = -999;
 break;
 }

 Beginning Objective-C Programming - 26

}

Now let’s add the case for finding the area of a square, which will execute when

shape is equal to 0:

int shape = 2;
//0 == Square, 1 == Parallelogram
//2 == Triangle, 3 == Circle

float area;

switch (shape) {
 case 0:{
 //Square
 float length = 3;
 area = length * length;
 break;
 }
 default:{
 //Set to negative number if
 //no shape is specified
 area = -999;
 break;
 }
}

Now our switch statement will compute the area of a square when the

shapevariable equals 0, and for any other value of shape it will just assign the

value of -999to the area variable.

Next we can fill in the case for a parallelogram, which uses different variables and

a different equation:

int shape = 2;
//0 == Square, 1 == Parallelogram

 Beginning Objective-C Programming - 27

//2 == Triangle, 3 == Circle

float area;

switch (shape) {
 case 0:{
 //Square
 float length = 3;
 area = length * length;
 break;
 }
 case 1:{
 //Parallelogram
 float base = 16;
 float height = 24;
 area = base * height;
 break;
 }
 default:{
 //Set to negative number if
 //no shape is specified
 area = -999;
 break;
 }
}

In the two case statements above, you can see how each case uses different

variables and a different equation. You may add as many cases to a switch

statement as you need to support the levels that you can expect in your
program.

Here are the remaining two cases we’ll support for now, a triangle and a circle:

int shape = 2;
//0 == Square, 1 == Parallelogram
//2 == Triangle, 3 == Circle

float area;

switch (shape) {
 case 0:{
 //Square

 Beginning Objective-C Programming - 28

 float length = 3;
 area = length * length;
 break;
 }
 case 1:{
 //Parallelogram
 float base = 16;
 float height = 24;
 area = base * height;
 break;
 }
 case 2:{
 //Triangle
 float base = 16;
 float height = 24;
 area = .5 * base * height;
 break;
 }
 case 3:{
 //Circle
 float pi = 3.14159;
 float radius = 6;
 area = pi * radius * radius;
 break;
 }
 default:{
 //Set to negative number if
 //no shape is specified
 area = -999;
 break;
 }
}

Omitting break Statements

The example above is the most common way to use switch statements, but it’s

possible to get your switch statements to behave in a different way. If you omit

thebreak statements at the end of each case, control of the program will not

return to the next level of code. Instead, each successive case statement will

continue to execute, until a break is reached or the switch statement ends.

 Beginning Objective-C Programming - 29

What happens is that once a case is evaluated to be true then every bit of code

remaining in theswitch statement is executed.

To illustrate this point, I created a switch statement below that doesn’t have

anybreak statements. What this is going to do is pretend to count so we are

going to start with an int called count and an int called addThisMany. The idea

is that when the switch statement has a case that matches the value of

addThisMany then we will start adding values to the int count. This means that

if we make the value ofaddThisMany equal to 3 then the switch statement will

evaluate each case until it finds one that matches 3. When it does, all the

remaining code in the switch statement will execute. In our case, these means

that count gets incremented in each case statement. We will step through this
in a second, but here is the code:

int addThisMany = 3;
int count = 0;
switch (addThisMany) {
 case 5:
 count++;
 case 4:
 count++;
 case 3:
 count++;
 case 2:
 count++;
 case 1:
 count++;
 default:
 break;
}

Let’s step through each case statement to see how this is working. Again, we

are going to assume that the variable value is 3 so that we will not start counting

 Beginning Objective-C Programming - 30

until we find a case that is equal to 3. In put each case in a table below to make it

easier to follow. The first column is the case, the second indicates whether the
case expression is true, the third column shows you the code that executes and

the final column will show count’s value as it increases through each case.

Case Expression True Executed Code count’s Value

case 5: NO 0

case 4: NO 0

case 3: YES count++ 1

case 2: YES count++ 2

case 1: YES count++ 3

Hand’s On Time

Imagine that you wanted to create a “secret decoder ring” app. A secret decoder

ring is a toy that let’s kids create secret messages by changing letters in the

alphabet into numbers and this could be a fun iPhone app. In real life, the

decoder ring would have a circle on it that matches up numbers and letters so

that you could get a sequence of numbers to represent a phrase. So, instead of

writing ABC you could write 123.

The first step to making an app like this would start with a switch statement.

Instead of a mechanical disk you would write a switch statement that had cases

for each letter of the alphabet. The code in each case would assign a different

 Beginning Objective-C Programming - 31

number to a variable depending on what letter of the alphabet the case

represented.

For this exercise, create a char variable called letterToEncode and an int

variable called letterCodedAsInteger. Next, write a switch statement that

evaluates the letterToEncode variable and then assigns a number to the

letterCodedAsInteger variable based on what letter in the alphabet

letterToEncode represents. The only rule is that each case must assign a unique
number.

 Beginning Objective-C Programming - 32

Chapter Four: Loops

Loops are used in programming when we want to repeat a
similar task many times. Instead of just writing out each

line of code we can use a loop to repeat code for a set

number of times or until a condition is met. There are three

types of loops that we will be discussing here: for loop,

while loop and do loop.

An example of something that you may want to do in programming that would be

repetitive task is counting from 1 to 10. From what you learned in the past

chapters you may try to count like this:

int count;
count = 0;
count = count + 1;
count = count + 1;
count = count + 1;
count = count + 1;
count = count + 1;
count = count + 1;
count = count + 1;
count = count + 1;
count = count + 1;
count = count + 1;

Clearly this task is very repetitive and with loops we can write it out in a much

better way. Let’s see how to do the simple example above using each type of

loop that we have available so far starting with the for loop.

 Beginning Objective-C Programming - 33

For Loops

The for loop is used when we know how many times that we want to repeat a
task. So, our counting problem from above is a good example of a task that a for

loop could help with since we know that we simply want to add one to the count

integer variable 10 times. Here is what the for loop will look like for our counting
problem.

int count = 0;

for(int i=0;i<10;i++){
 count = count + 1;
}

Let’s see how to count from one to 10 using a for loop. The for loop starts with

the for keyword. Next is the three bits of code in parenthesis that control how

many times code in the loop will execute. The first thing in this part of the for

loop is the integer variable i. This is what is used to control the loop. This variable

is initially set to 0 (int i=0;). Next the ending condition is defined (i<10;). Finally,

each time the loop executes the variable i is incremented by 1 (i++).

What this all means is that when the code reaches the loop a temporary variable

called i will be created with an initial value of zero. When we use a variable in a

for loop like i we refer to it as the control variable because it controls the loop.

Each time the code in the loop (that will appear after the for statement) executes

the value of i will be increased by 1. The loop will keep on going until i is no
longer less than 10.

 Beginning Objective-C Programming - 34

Now that we have our loop we need to include the code that will be executed

each line the loop cycles. This is sometimes called iterating through the loop.

The first thing we did was to define a region of code with curly braces .

The next part is the code that we want to repeat 10 times. So to use the example

that we started with we could replace some of those lines of code with count =

count +1;.

The for loop is very powerful and you could probably do most of your repetitious
programming with just this loop. But, there are two other ways to do loops in

programming that may also use.

While Loops

While loops operate in the much the same way as for loops. The only real

difference other than the use of the while keyword is that placement of the

control variable and the operations associated with the control variable. Here is

how we would count from one to ten using a while loop.

int i = 0;
while (i < 10){
 count = count + 1;
 i++;
}

To start coding a while loop we will need to first declare and set an initial value

for an integer variable. This will serve as our control variable. Next we will use

the whilekeyword to specify the while loop. We must also include the ending
condition in parenthesis here.

 Beginning Objective-C Programming - 35

Next we use curly braces {} to define our region of code.

When using while loops be careful to make sure to keep incrementing the

control variable. In our example, we are using i to keep track of how many times
we have gone through the loop. Each time the while loop executes, it checks on

the value of i to see if it is still less than 10. If it is, then the loop will iterate one

more time. If not, then the loop stops executing and the program moves on. If

you forget to increment the control variable each time then your app may get

stuck repeating this loop forever.

The last part of the while loop here is the same as what we have for the for loop.

It is the code we want to repeat which is count = count + 1;.

As you can see this loop works just like a for loop but the syntax is a little bit

different. Both the for loop and the while loop could have a situation where the
code in the loop never executes. This happens when the control variable was

already equal to 10 (and not zero like we demonstrated above). If that were to

happen then these loops would not execute any code at all. Try this variation of

the example above yourself to see what I mean:

int i = 10;
while (i < 10){
 count = count + 1;
 i++;
}

If you want to make sure that the code in your loop is guaranteed to execute at

least once you must use a do loop.

 Beginning Objective-C Programming - 36

Do Loop

The do loop is distinguished from both the for loop and the while loop in that a

do loop will execute its code at least once even if the condition is already met.
Here is what a do loop looks like.

int i = 0;
do{
 count = count + 1;
 i++;
}while (i < 10);

To start to code a do loop you start by declaring the control variable and setting

its initial value. The next step is to simply type in the do keyword and the curly
braces we will need.

In contrast to the previous two loops we will put the ending condition at the end

of this loop. We need to be careful to increment the control variable here as well.

Now that we have the loop all set up we can again stick in our counting code to

complete the example. Finally, we can add the code that we want to repeat.

The way that this do loop is set up right now is equivalent to the other two loops
that we used to count with. However, there is a subtle difference here that will

only be seen when the control variable would seem to make the loop not execute

at all. In our example this would be when i = 10.

int i = 10;
do{
 count = count + 1;

 Beginning Objective-C Programming - 37

 i++;
}while (i < 10);

The above code would execute the counting code once time. This is because the

expression that controls whether the loop executes does not get evaluated until

the end so the code gets at least one chance to execute.

Hands On Time

Code the factorial of 5 using a loop. In math, a factorial is the product of all

positive numbers equal to or less than the number. This is noted with an

exclamation point after the number. So, the factorial 5 would be noted as 5!. To

figure out what the factorial of 5 is you can simple multiple all the numbers that

are equal to or less than the number like this: 5! = 5 * 4 * 3 * 2 * 1 = 120. So, the

factorial of 5 is 120.

Write code to solve the factorial of any number. Use loops to do this and make

sure to write code three times using each loop.

 Beginning Objective-C Programming - 38

Chapter Five: Functions

A function in programming is a discreet area of code that

is independent from the rest of the program. Functions are

also called subroutines and as that name implies functions

are a bit like small programs. Generally, functions may

accept variables as inputs and a function may produce a

value as an output.

Take a look at figure 1 to see what all the pieces of a function look like before we

discuss each piece separately.

Figure 1: Anatomy of a Function

 Beginning Objective-C Programming - 39

Return Type

Something that a function can do is produce a result based on information that

you give to the function. A result can be a number like an integer or float.

Functions can also return other primitive types like Boolean values like YES and

NO as well as characters like A or B.

Take a look at figure 1 to see where the return type belongs in the function

declaration. Our function returns an integer as a result so we use the int keyword
to indicate this.

int productOfTwoNumbers (int number1, int number2){
 int result;
 result = number1 * number2;

 return result;
}

This works in the same way as it does for declaring variables so you can see

return types specified with int, BOOL, float, double and char.

Functions can even have a return type of nothing at all! What? Why? Sometimes

we want to separate part of our program but we do not need a result. In those

situations we will would like to use a function but we do not need to get a result

back.

To code a function that does not return a value you may use the void keyword.

Another difference with functions that use void to specify that they are returning
nothing is that they may omit the return value statement.

Function Name

 Beginning Objective-C Programming - 40

The next part of the function declaration is the function name. The function name

goes right after the return type which you can see clearly in figure 1.

int productOfTwoNumbers (int number1, int number2){
 int result;
 result = number1 * number2;

 return result;
}

We use functions to attack a big problem by first breaking the big problem up

into manageable chunks. Now we can treat each chunk on its own. When we are

satisfied that each chunk works the way that we expect we can then use those

functions together to solve our bigger problem. Let’s see how to use functions.

Parameters

Functions can accept inputs as well as return output. Inputs are information that

will be used in the function. You can specify the inputs for a function in the

parameter list. The parameter list is a list of variables enclosed in parenthesis that

are placed right after the function name. In the figure 1 you can see that we

specify two integers as parameters.

int productOfTwoNumbers (int number1, int number2){
 int result;
 result = number1 * number2;

 return result;
}

 Beginning Objective-C Programming - 41

You declare parameters in the same way as you do variables. They are located

right after the function name in parenthesis and each variable is separated by a

comma.

Function’s Code Region (Scope)

We talked about the notion of scope already. Functions get their own region of

code with has it’s own scope. This region is defined starting with the first curly

brace after the parameter list and the region ends with the match curly brace

after the function’s last line of code.

Any variable that you code within these curly braces will only be in scope from

within the function’s curly braces. This gives us a great way of keeping the code

that only belongs in the function separate from the rest of the program. In

function displayed in figure 1 all the code that falls between the curly braces is in

scope for the function.

int productOfTwoNumbers (int number1, int number2){
 int result;
 result = number1 * number2;
 return result;
}

Return Value

For functions that will return a result we need to use the return keyword to

specify what variable value will be returned to the code that is using the function.

Return values serve as the output of the function. Return values must match the

 Beginning Objective-C Programming - 42

type declaration of the function. So, if you declare a function with the return type

as an integer they you must be sure to return an integer in your return statement.

In figure 1 we use the integer variable we called result to temporarily store the
result of our calculation. At the end of the function’s region of code we use the

return statement to return the result value back to the program.

int productOfTwoNumbers (int number1, int number2){
 int result;
 result = number1 * number2;

 return result;
}

We use functions to attack a big problem by first breaking the big problem up

into manageable chunks. Now we can treat each chunk on its own. When we are

satisfied that each chunk works the way that we expect we can then use those

functions together to solve our bigger problem. Let’s see how to use functions.

Calling Functions

So that is how you declare a function. To use a function you use do must call the

function from the main program. So, if we were to assume that the function from

figure 1 was declared in a place that allowed our main program to get access to

it we could use productOfTwoNumbers.

The first thing we would need from the main program is an integer to hold the

output value that the function is going to return to us.

 Beginning Objective-C Programming - 43

int resultOfFunction;

Now that we have something to hold the value we can call the function and

assign the result to our resultOfFunction integer.

int resultOfFunction;
resultOfFunction = productOfTwoNumbers(5, 4);

Calling the function works by including the function name with parameter values

in parenthesis after the function name. The parameter values that you provide

here in the function will be assigned to the parameters declared in the function.

These may then be used by code in the function. In the code above

resultOfFunction will now contain the value returned from the function which in
this case is 20.

Where To Declare Functions

Now that you have an idea of what a function looks like it’s time to go through

the process of adding a function to your app. For the first example we can simply

add the resultOfFunction function to an XCode project.

Add Header And Code Files

Functions are used to split big problems into smaller problems that are easier to

solve, but they are also a way to re-use our coding work. The idea is that if you

create a function that solves a math problem (like our example in figure 1) then

 Beginning Objective-C Programming - 44

you may want to use that function in many parts of your program. You may even

want to use this function in other programs and apps. If you code a really great

function then you may even want to share this with other programmers.

To make sure that we can do this we must code our functions in their own code

files. Our files can have more than one function in them, but you should take care

to only include related functions in the same file.

Functions must be coded in two files. The first file is called the header file (this is

also called the interface file). The header file has a file extension of .h. This

second file is an implementation file and ends in .m. Let’s add these two files to
our XCode project before we talk about them further.

To add a new file to your XCode project, select XCode’s main menu and then

selectFile > New > New File…. You will see a dialog box that pops up and looks

like figure 2. Choose iOS > Cocoa-Touch > Objective-C Class.

 Beginning Objective-C Programming - 45

Figure 2: Add New File Dialog

Now click Next and name the file Functions. You should now see two new files

appear in the XCode project’s group folder called Functions.h and Functions.m.

Let’s talk about what goes into each of these files next.

Header Files

The header file is used to specify what is called a forward declaration. A
forward declaration is a declaration of a variable, function or type when the

complete definition has not yet been given. What you are doing when you use a

forward declaration is telling the program that some will be defined in the future

that matches the specifications that we outline in the header file.

Our header file will contain a forward declaration for the function we are looking

at in figure 1. We can code this by simply typing out the very first line of the

 Beginning Objective-C Programming - 46

function from figure 1 and replacing the curly brace that would start the function’s

region of code with a semi-colon.

Click on the Functions.h file that was created for you in the previous step. You
will see a file that has some comments written in.

Note: comments are the green text that start with /* and end with */

Your file will look something like this except you will have your own personal

information include here in place of mine.

//
// Functions.h
// functions
//
// Created by Matthew Campbell on 10/25/11.
// Copyright (c) 2011 Mobile App Mastery. All rights reserved.
//

#import <Foundation/Foundation.h>

@interface Functions : NSObject

@end

The first thing we need to do is to erase all the code that is in this file except for

the #import statement since we do not need the boilerplate code that XCode
provides for us right now. Your revised Functions.h file should look at this:

//
// Functions.h
// functions
//
// Created by Matthew Campbell on 10/25/11.
// Copyright (c) 2011 Mobile App Mastery. All rights reserved.

 Beginning Objective-C Programming - 47

//

#import <Foundation/Foundation.h>

Now that we go that out of the way we can add the forward declaration for our

function just type into this file after the comments.

//
// Functions.h
// functions
//
// Created by Matthew Campbell on 10/25/11.
// Copyright (c) 2011 Mobile App Mastery. All rights reserved.
//

#import <Foundation/Foundation.h>

int productOfTwoNumbers (int number1, int number2);

Now it is time to move on to writing the code to make this function work in the

implementation file.

Implementation Files

Implementation files are where we put the code that was declared in our forward

declaration. This is where all the work of the function gets done. Click on the

functions.m to see the contents of the implementation file that XCode created
for you.

//
// Functions.m
// functions
//

 Beginning Objective-C Programming - 48

// Created by Matthew Campbell on 10/25/11.
// Copyright (c) 2011 Mobile App Mastery. All rights reserved.
//

#import "Functions.h"

@implementation Functions

@end

This looks like the header file except that we have this #import statement added
at the top of the file. This #import imports the forward declaration into this file for

us. Like the header file we have some extra code in the implementation file that

we need to get ride of for our example.

Get ride of the extra code XCode put in here for by deleting the lines starting with

@implementation and @end. When you are finished your file should look like
this:

//
// Functions.m
// functions
//
// Created by Matthew Campbell on 10/25/11.
// Copyright (c) 2011 Mobile App Mastery. All rights reserved.
//

#import "Functions.h"

Now what we need to do in this implementation file is to add the function.

//
// Functions.m
// functions

 Beginning Objective-C Programming - 49

//
// Created by Matthew Campbell on 10/25/11.
// Copyright (c) 2011 Mobile App Mastery. All rights reserved.
//

#import "Functions.h"

int productOfTwoNumbers (int number1, int number2){
 int result;
 result = number1 * number2;

 return result;
}

That is it – we now can use this function from anywhere in our program by taking

a few key steps. Let’s do that now.

Calling Functions

Let’s use our function in our app. Select the file in your XCode project named

AppDelegate.m. Your app delegate file will look something like this:

// AppDelegate.m
// functions
//
// Created by Matthew Campbell on 10/25/11.
// Copyright (c) 2011 Mobile App Mastery. All rights reserved.
//

#import "AppDelegate.h"

@implementation AppDelegate
@synthesize window = _window;

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary
*)launchOptions{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];

 return YES;
}

 Beginning Objective-C Programming - 50

@end

The first step that we need to take to call our function is to import the header file

into our app delegate. You can do this at the very top of the file after the

automatically generated comments.

//
// AppDelegate.m
// functions
//
// Created by Matthew Campbell on 10/25/11.
// Copyright (c) 2011 Mobile App Mastery. All rights reserved.
//

#import “Functions.h”
#import "AppDelegate.h"

@implementation AppDelegate
@synthesize window = _window;

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary
*)launchOptions{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];

 return YES;
}

@end

Importing the header file gives us access to that function so now we can use the

function in the same way we learned before. Declare an integer variable named

result and use the function to assign a value to result. You should put this code

in the didFinishLaunchingWithOptions method.

 Beginning Objective-C Programming - 51

//
// AppDelegate.m
// functions
//
// Created by Matthew Campbell on 10/25/11.
// Copyright (c) 2011 Mobile App Mastery. All rights reserved.
//

#import "AppDelegate.h"

@implementation AppDelegate
@synthesize window = _window;

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary
*)launchOptions{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];

 int result = productOfTwoNumbers(3, 6);

 return YES;
}

@end

Now the value of result will be 18 because we called the function

productOfTwoNumbers with the parameters 3 and 6.

Hands-On Time

In the last chapter, you wrote code help a user generate secret codes. Essentially,

what you did was create a switch statement that used the value of a variable to

transform a letter into a character and vice versa. For this exercise, create two

functions based on that code.

The first function should be called encryptThisLetter. encryptThisLetter will

have one parameter of type char and it will have a return type of int.

 Beginning Objective-C Programming - 52

The second function will be used to decode and the function should be called

decryptThisNumber. This function will have a parameter of type int and it will

return a type of char.

 Beginning Objective-C Programming - 53

Chapter Six: Object-Oriented Programming

Object oriented programming is a way of thinking about

programming in terms of objects. An object in

programming is like an object in the real world. That is, an

object is something that you can describe and does

things. Objects in the real world also have relationships to

other objects. That is, an object in the real world may be

made up or other objects, use other objects or it may be a

variation of another object.

To help understand objects in programming, consider the example of a real world

object like a car. You can describe a car as something that has four wheels, a

color, model, make and so on. A car also does things like go forward, turn left

and stop. Finally, a car is related to other objects in the world. A car is a type of

vehicle (which itself is a kind of object), a car is made up on other objects

(engine, wheels, stereo system) and a car is used by a person.

This way of describing and organizing things is natural for most of us. We tend to

think of the world in terms of objects. In programming, objects are like the car

example: an object’s attributes can be described and they can demonstrate

behavior. Sometimes objects in programming actually correspond to objects in

the real world. Programming objects also have relationships to other

programming objects.

 Beginning Objective-C Programming - 54

Programming languages that support objects are called object oriented

programming languages. The object oriented programming language that is used

with iOS is called Objective-C.

In order to really understand object oriented programming and how to implement

objects in your app we need to get comfortable with some of the vocabulary and

high-level concepts.

Object

In programming, an object is an entity that contains both data and behavior.

Objects are described by many data points and may have many behaviors.

Objects in programming can correspond to objects in the real world like cars and

people. In these cases, an object in our computer program acts as a model (a

simplified version) of the real world object. An object in our program that

represents a person may have data that represents things like a person’s eye

color, height and weight and the object will also have a way to represent a

person’s behaviors like walking, talking and eating.

Objects also are used to represent more abstract things like decision-making

processes and software components like menus and buttons and Internet

connections.

Attributes And Properties

The data that is contained in an object is referred as attributes or properties. An

attribute is a data point that describes an aspect of an object. So a person object

may include a name property as well as a height, age and weight property.

 Beginning Objective-C Programming - 55

Objects are described by this collection of property values. Properties describe

what the object IS.

Behavior And Methods

Objects contain both data (properties) and behavior. Behavior is what the object

can do. A person object may have the behavior of walking and talking. More

software-centric objects may have behavior like opening an Internet connection

or writing to the file system. Each behavior that an object can do is called a

method. Methods describe what the object can DO.

Messages

Objects communicate to one another using messages. So if a person object

wanted a car object to slow down the person object would need to send a

slowDownmessage to the car object. A message will correspond to a method in
a given object. That is, in the example above the person object sent the message

to the car object. This works only if the car object has a method defined in its

class (defined next) that corresponds to the message. Here the car would need

to have a slowDownmessage defined in its class definition.

Class Definition

Class definitions are used to define an object in programming. Just like we need

to define our own composite type before we can use them we need to define our

own class type before we can use objects. The class is what is used to define all

the properties and methods that will make up the object that we will be using.

Classes are related to objects like blueprints are related to widgets in a factory.

You create a blueprint once and then use this blueprint as a guide to create any

 Beginning Objective-C Programming - 56

number of widgets. Class definitions are used to define what makes up an object

and are used to create any number of classes.

Instantiation And Constructors

The process of creating an object from a class definition is called instantiation.
Objects may be instantiated from a class as often as the program needs more

objects. Instantiation requires a special method called a constructor. A
constructor is a method that returns an object based on the object’s class

definition. In Objective-C you can tell what when a method is a constructor when

it has the prefixinit.

Here is an example of an object being instantiated from a constructor that you

see often in iOS:

UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Alert View"
! message:@"Hello World"
! delegate:self
! cancelButtonTitle:@"Ok", nil
! otherButtonTitles:nil];

The code you see above is an example of creating an object using a constructor.

Here we are using a class that has already been defined for us. The class name

isUIAlertView. The object here is called alert. You may notice that alert has an

asterisk * in front of it. This is something that is required for object declarations
that you do not need for primitive or composite types. The constructer method is

all the stuff that comes after the part that starts with initWithTitle:.

Object-Oriented Design Concepts

 Beginning Objective-C Programming - 57

OOP is a way of thinking about code that helps programmers keep complex

systems organized. OOP also helps programmers conceptualize systems by

creating models and systems of interaction based on the what people expect in

the real world. The first part of this has to do with the idea of objects. But, there

are a few more design considerations unique to OOP that go beyond the idea of

grouping methods and data together in objects.

You can think of the following design considerations as guideposts on how to

think of the objects you create. Knowing the design ideas below will also help

you to consume objects that other programmers create.

Responsibility

Responsibility has to do with the design idea that an object should be ultimately

responsible for all the information and behavior that belongs to its domain. That

is, if you have created a person object then that object will be responsible for

everything that a person is and does.

You would not attach methods or properties that logically belong to the person

object with other objects. This is something that you may find tempting when

quickly coding something in your app. For example, it may not be out of the

range of possibility that I would carelessly define a car method that had a rouge

property on it called something like driversEyeColor even though this is not
something that logically a car object would be responsible for. The problem with

defining behaviors and attributes in a class were they don’t belong is that it

becomes quite painful to attempt to debug these things when needed later on.

Encapsulation

 Beginning Objective-C Programming - 58

Encapsulation means that the internal workings of an object are hidden from the

rest of the program. This means that any data and procedures required for the

object to work are not directly accessible by other objects. Really other objects

do not care or need to know how your object gets things done, they just need to

know that certain things will get done.

You as the program must choose what will remain privately encapsulated in your

object and what will become publicly available to other objects. Some behavior

and data are not really important to the rest of the program so you may decide to

just keep them to yourself. There will be some data and behaviors that you do

want exposed to other objects and that is ok but you will have to make a

judgment about what is private and stays encapsulated in your object and what

is public and available for use by other objects.

These two ideas of responsibility and encapsulation with objects is what makes

object oriented programming much easier to create an organized system. If you

stick to following the notion of responsibility then you can be pretty sure that

methods and data that you need to maintain in the future can be located in the

appropriate class definition. Encapsulation ensures that we don’t inappropriately

meddle in the inner workings of other objects and keeps us from wasting

unnecessary time on code that our other objects can’t touch.

Inheritance (Is-A Relationship)

Objects in programs can have relationships just like objects in the real world. The

inheritance relationship refers to kind of relationship where one object is a

specific type of another object. Imagine that you have a computer object where

you encapsulate everything that you know about what a computer is and does.

 Beginning Objective-C Programming - 59

This computer object is fine most of the time but if you think about it there are

other types of computers in the world: Windows PC, Macs, iPhones, onboard car

computers and so on. Each of these things is-a computer but they are more than
that as well.

In programming we call this relationship inheritance because if you were to

design a class definition for iPhone your first step would be to inherit everything

that already exists for Computer. This way we do not have to re-code everything
that we have already coded for Computer. The class that you are inheriting from

is called the parent class and when you inherit a parent class you automatically

get all the parent classes attributes and behaviors as if you coded them again in

your new class.

The inheritance relationship is one way in which object oriented programmers

can efficiently deal with the problem of code entities that are mostly the same but

have variations.

Composition (Has-A Relationship)

Composition is another relationship that objects can have and you will see this

one all the time when you are looking at class definitions. What composition

means is that objects may be composed of other objects. So maybe you have an

office object. That object may have as part of its definition other objects that

make it up. You will probably have a fax object, a secretary object, a desk object

and objects for everything that makes up an office. We would say that an office

object is composed of a desk object, a fax object and a secretary object.

 Beginning Objective-C Programming - 60

This notion of composition allows us to still use the behaviors and attributes that

we need for other objects while maintaining the idea of responsibility and

encapsulation. So, in our office example we have a fax object that will be

responsible for everything fax. The office object is not responsible for the

behavior of the fax object even though the office object can use the fax object.

The Person Object Example

To make things a bit more concrete I am going to go through the process of

describing a person in object oriented programming terms. If this is starting to

feel a bit abstract don’t worry too much about that – in the next chapter you will

start to see how these object oriented concepts are applied to iOS programming

with Objective-C.

When framing things in object oriented terms it helps to think of the object itself

and just write down what the object is and what the object does. When I think of

a person as an object some things that come to mind are that a person can be

described by their name, age, eye color and height. Some things that a person

can do is walk, talk and eat.

If I were to diagram this definition of a person that will eventually turn into a class

definition for a person in my program it would look something like this:

 Beginning Objective-C Programming - 61

Figure 1 – Class Definition for a person

Now if I wanted to use this class definition of a person I would need to create

objects by instantiating person objects using this class definition. Each person

object would have the same attributes but the attribute values would be different.

For example,

Figure 2 – Person Objects Instantiated From The Person Class Definition

 Beginning Objective-C Programming - 62

My program may also need specific types of persons to deal with cases when a

person has a special abilities or roles. So if I needed something to deal with

artists, police officers and programmers I might have something like this:

Figure 3 – Inheritance Is-A Relationships

Artist, Police Officer and Programmer are all a kind of Person. Each of these
have their own attributes and behaviors but they all inherit things like name, eye

color and the ability to walk and talk based on their relationship to the Parent

class definition.

So this wraps up the high level object oriented stuff. In the next chapter, you will

see these how these ideas are used in the object-oriented frameworks

Foundation andUIKit that are used in iPhone development.

 Beginning Objective-C Programming - 63

Chapter Seven: Introduction To Foundation & UIKit
iOS developers use two key object oriented frameworks called Foundation and

UIKitto do many of the most important programming tasks needed to make
apps. Frameworks are collections of code that are shared by programmers that

solve common problems. Foundation was built by engineers to solve common

computing problems like using strings, managing collections of objects,

connecting to the Internet, storing data, writing to the file system and much

more. UIKit is the framework that is responsible for all the visual elements that

you see on iOS apps like buttons, tables and tab bars.

I want to go over these frameworks with you in this chapter for two reasons. The

first is that the best way to start learning object oriented programming is to see

how objects are used in code. You need to learn how to instantiate objects from

classes, manage memory with objects and how to use objects. Most of modern

programming focuses on using code from frameworks like Foundation to develop

software.

The NS And UI Prefixes

Let’s take a look at a Hello World example first so we can see where some of

these frameworks come into play.

-(BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary
*)launchOptions {

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Alert View"
 message:@"Hello World"
 delegate:self
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
 [alert show];

 Beginning Objective-C Programming - 64

 [window makeKeyAndVisible];

 return YES;
}

I highlighted the code that I wanted to point out above. UIAlert is the class

definition that we used above to instantiate our alert object. UIAlert objects are
the dialog boxes that pop out and send the user a simple message. But, why

does this class definition have the UI in front? Why not use the more
understandable word Alert for a name of the class definition? Even odder you will

find that there are many classes like this such as UITableView,

UITableViewController, UIView, UIViewController,UIButton and so on. All of

these classes are part of the framework called UIKit.

The UI and other two letter prefixes are there to help us distinguish classes that

belong to a certain framework. So, all the UI classes belong to UIKit. It is a
matter of convention to either make this prefix a hint about what the framework is

supposed to do or to use the first two letters of the company or person that

created the framework. In UIKit here the UI stands for User Interface which
indicates to us that all the classes in UIKit with be responsible for user interface

components like buttons and other things that appear on the screen.

NS is the prefix used for all the Foundation classes. This prefix is not as obvious,
but most people believe that this refers to the company that originally created

Foundation (NextStep). In the examples below you will see that the Foundation

classes that we are using all have the NS prefix.

 Beginning Objective-C Programming - 65

NSObject

One of the most important classes in Foundation is called NSObject. NSObject

is a class that defines generally what an object is in Objective-C. nNSObject
includes code that is useful for any object that we will use in programming. For

this reason, most other classes are in an inheritance relationship with NSObject.

NSObject is considered the root (or first) class.

One of the things that NSObject does is provide methods to allocate memory for
objects and set the initial properties for objects. Most classes that inherit

fromNSObject use these methods to instantiate objects. NSObject also has a

method called description that returns a text description that describes the
class.

Sending Messages

In Objective-C, we get things done by sending messages to classes and objects.

When you want something to happen you must send a message to the object or

class responsible for the action.

Sending messages to objects is a bit like calling functions in procedural

programming. When you send a message to an object or class the message will

match a method definition (which is coded in a similar way to a function) that is

part of the class. You will find out how to code your own methods in the next

chapter. Messages can have parameters and they may perform some action or

return a value. You can send messages to classes or to objects. You can send a

message to a class at any time but you can only send messages to objects after

the object has been instantiated.

 Beginning Objective-C Programming - 66

Sending Messages To Classes

You can send a message to a class by enclosing the class definition name in

square brackets and writing in the name of the message that you would like to

send. For example, if I wanted to send a message to the NSObject class asking

for a description of NSObject I would send the description message to

NSObject:

[NSObject description];

n the message about we did not do anything with the return value (the

description message returns a string). A more practical way to use the

description message is by writing its output to the log like this:

NSLog(@"%@", [NSObject description]);

This would print out NSObject’s description to the log which is simply NSObject.

Notice too that the function, NSLog, that we have been using has the NS prefix
which marks NSLog as part of Foundation.

The messages that you send to classes are defined in the class as class

methods. Class methods are methods that are only used with the class itself.
You can find out what class methods are available to you by looking up the class

definition in the documentation that Apple provides with iOS SDK. Each class

 Beginning Objective-C Programming - 67

has a special section that lists all the class methods under the title Class

Methods.

Sending Messages To Objects

You can also send messages to objects. The only difference here is that you must

have an object in place that has already been instantiated. Messages sent to

objects correspond to what are called instance methods defined in the class
definition. You can find out what instance methods are available by looking up

the class in the Apple documentation and checking under the heading Instance

Methods.

You will see some real examples of messages sent to objects below. But, they

will all follow this pattern, which looks like the pattern we used to send messages

to classes:

[object doSomething];

You can send messages to objects and classes that have parameters but before I

show you how to do that I want to introduce you to some more Foundation

classes so I can give you more concrete examples. First though, we need to see

how to instantiate objects.

How To Create Objects (Instantiation)

 Beginning Objective-C Programming - 68

To create objects we follow a process that starts off a bit like declaring variables

in procedural programming. To jog your memory, to declare an integer variable

you would simply type this:

int myNumber;

The first step to creating an object looks very similar, but for objects we do not

use the primitives type definitions like int or float. Objects require a class

definition in place of the type. Objects also require us to use the * in front of the
object’s variable name. Here is an example of how to declare an object using the

NSObject class definition:

NSObject *object1;

Next we need to do two things: instantiate an instance of the class (the object)

and initialize the object. To instantiate an instance of a class we send the alloc

message to the class. This will allocate memory for the object and return the

object, which we can then assign to our object variable.

object1 = [NSObject alloc];

The next part of the process is to initialize the new object. NSObject gives us the

initinstance method to do this for us, but other others will have other initialization
methods. By convention, initialization methods begin with init.

 Beginning Objective-C Programming - 69

You send the init message and assign the return value from init to the

object1variable.

object1 = [object1 init];

That is all there is to instantiating an object in Objective-C. But, there is one more

thing. Even though I showed you how to do this in three steps with three different

lines of code, most programmers will do this all in one line of code by declaring

the object and then using nested messages. Nested messages are messages

that are enclosed in other messages. So usually you will see objects declared,

instantiated and initialized all on the same line like this:

NSObject *object1 = [[NSObject alloc] init];

In the line of code above the [NSObject alloc] message is nested in inside the

initmessage. How it works is that the innermost message gets sent first to do its
thing and then the next nested message will be sent. So above you first send

[NSObject alloc] which returns an instance of NSObject. Next we send the init
message to the object that was just returned.

Creating Objects Without Alloc and Init

There is another way to create objects, and that is done through what I like to call

convenience methods. These methods also return objects like the alloc and init
methods, but they do things a little bit differently in the background.

 Beginning Objective-C Programming - 70

Here is an example of a convenience method that returns an NSString object.

NSString *aString = [NSString stringWithString:@"My New String"];

NSString is a commonly used and important class that we will cover next. You
can see from the code above that we are still creating an object, but we are not

usingalloc to allocate memory for the object nor are we using an init message to
initialize the object. This is how you can tell that you are using a convenience

method to create an object.

NSString

A string is a list of characters like “See spot run”. If you have working with strings

using what you know of programming so far you have probably been a bit

frustrated. C has support for individual characters with the char primitive type
but if you need to use more than one letter you are would be in for more work if it

wasn’t for NSString.

NSString is used very often in iOS apps so it is a great class to get to know well.

For the first example we are going to create an object using the NSString class

definition. Then we are going to use this object as a parameter in the UIAlert

object alert to make alert present a different string to the user.

The easiest way to use NSString is to declare a NSString object and assign it a

string value on the same line. Let’s create a NSString for “See spot run”:

NSString *spotString = [NSString stringWithString:@"See spot run"];

 Beginning Objective-C Programming - 71

The first part of this line of code is NSString *spotString. This is how we declare

ourNSString object here called spotString. Since this is an object declaration we

need to remember to use the * before the object name. In the next part we use

the assignment operator to assign the string “See Spot Run” to the spotString

object variable using the NSString convenience method stringWithString:.

The @ symbol here is a called a compiler directive. Compiler directives are used
to let the compiler know that there is something special about the code following

the directive. Here the @ indicates that the text in the parenthesis is a NSString
object and not a regular C string. The code we are using here is a shorthand

version of a convenience method that we covered earlier, stringWithString:.

Once you have a NSString object you may use it throughout your program when
you need a string. Since we want to use our string immediately we can just use

the convenience method to create the string object.

Here is an example of how you could use the string object. If we want our alert

object to say “See spot run” instead of “Hello World” we can use spotString as a
parameter in place of the “Hello World” string that we already have in there.

Before

-(BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary
*)launchOptions {

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Alert View"
 message:@"Hello World"
 delegate:self
 cancelButtonTitle: @"Ok"
 otherButtonTitles:nil];

 Beginning Objective-C Programming - 72

 [alert show];

 [window makeKeyAndVisible];

 return YES;
}

After

-(BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary
*)launchOptions {

 NSString *spotString = @"See spot run";

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Alert View"
 message:spotString
 delegate:self
 cancelButtonTitle: @"Ok"
 otherButtonTitles:nil];
 [alert show];

 [window makeKeyAndVisible];

 return YES;
}

Now when you use the code to run your app you will see this instead of the Hello

World message:

 Beginning Objective-C Programming - 73

Figure 7.1: spotString object presented in alert

Since spotString is an object created from the NSString class definition you can

do a lot more with spotString than simply use it in other objects. Remember that

objects in object oriented programming have attributes and behaviors. We

usually call attributes properties when we talk about them in the context of

code. NSStringobjects have two properties: description and length.

Description is the characters that make up the string. To use this property you

can use dot notation, spotString.length or as a shortcut you can simply use the
object itself like you did in the example above. The length property is an integer

that tells us how long the string is. So as an example here is how you would write

out the length of spotString to the console screen:

NSLog(@"spotString.length = %i", spotString.length);

 Beginning Objective-C Programming - 74

NSString objects also have some other methods that are very useful. For
instance, if you would like see in your string in all capital letters you could use

theuppercaseString method:.

NSLog(@"spotString all caps = %@", [spotString uppercaseString]);

The line above would print out this message to the console:

spotString all caps = SEE SPOT RUN

Similar methods exist to display lowercase letters, to compare strings, search for

substrings and even to capitalize the first letter in the string.

Hands On Time

Foundation is a very rich framework so I am going to spend some more time

showing you what you can do with Foundation classes in the next chapter. But,

for now start getting a feel for how to use object oriented programming with

Foundation by experimenting with the NSString class.

Change the Hello World code to have the alert object display an all lowercase
version of your “Hello World” message. To do this you must create your

ownNSString object to use in the alert.

 Beginning Objective-C Programming - 75

For a challenge, see if you can figure out how to use your NSString object with
the string “Hello World” to display only the word “Hello”. Check out the

documentation for some methods that will help you do this. The easiest way to

check out the documentation for NSString is to hold down the command key

and click on the word NSString while you are in XCode. You may also simply

look up NSString on the Apple Developer website. While you are there take a

look at all the features included with NSString.

Hint: the method that you are looking for as the word substring in it.

 Beginning Objective-C Programming - 76

Chapter Eight: Essential Foundation Classes

Now that we have a better handle on how object oriented

programming works on iOS we should go over some of

the key Foundation classes that you will use in your own

apps. Like the name suggests, Foundation supports the

key frameworks used in iOS development. Most of what

you will be doing when building iOS apps comes from

Foundation and will use Foundation classes.

Foundation Inheritance Hierarchy

Remember that classes can have an inheritance relationship with other
classes. Although we did not mention it specifically we have already seen classes

in Foundation that are in an inheritance relationship. The two classes that I am

talking about are NSObject and NSString. NSString inherits from NSObject.

You might also say that NSString is a kind of NSObject. Because of this

relationship, NSString has all the properties and methods it needs to be and do
what an object is.

If you look at all the object’s inheritance relationships as a whole you have what

is called an inheritance hierarchy. It really helps to see the relationships between

classes when you draw them out in a diagram. Below in Figure 1 is a diagram of

the inheritance relationships that we have already covered in Foundation.

 Beginning Objective-C Programming - 77

Figure 8.1: Inheritance

Let’s fill out more of this inheritance hierarchy with some key Foundation classes.

NSMutableString

In you look closely at the documentation and examples for NSString you will not

find any way to change the content of the string itself. That is because NSString

cannot be changed so there is no way to add characters or to edit NSString
objects in any way. If you need to use a string that has values that change you

must useNSMutableString.

NSMutableString inherits from NSString, but NSString has additional behavior
that you can use to change the content of the string. If you were to

viewNSMutableString in the context of our inheritance hierarchy it would look
like this:

 Beginning Objective-C Programming - 78

http://howtomakeiphoneapps.com/wp-content/uploads/2011/11/makeiphoneappC11-1.png
http://howtomakeiphoneapps.com/wp-content/uploads/2011/11/makeiphoneappC11-1.png
http://howtomakeiphoneapps.com/wp-content/uploads/2011/11/makeiphoneappC11-2.png
http://howtomakeiphoneapps.com/wp-content/uploads/2011/11/makeiphoneappC11-2.png

Figure 8.2: Inheritance

The first thing that I want to do to demonstrate NSMutableString is change

theUIAlertView code that I used as the Hello World example. What I will have

now is two UIAlertView objects so when the user uses the app two separate

boxes will pop up with messages. Each time the UIAlertView object appears it

will display the content in our NSMutableString. Here is what the code should
look like:

 Beginning Objective-C Programming - 79

UIAlertView *alert1 = [[UIAlertView alloc] initWithTitle:@"Alert View"
 message:@"Hello World"
 delegate:self
 cancelButtonTitle:@"Ok", nil
 otherButtonTitles:nil];
[alert1 show];

UIAlertView *alert2 = [[UIAlertView alloc] initWithTitle:@"Alert View"
 message:@"Hello World"
 delegate:self
 cancelButtonTitle:@"Ok", nil
 otherButtonTitles:nil];
[alert2 show];

When you build and run this project you will see two message boxes pop up, one

right after another. Right now they will both still just say “Hello World” but next

we will replace them with the contents of a NSMutableString object.

The first thing that we need to do is to instantiate a NSMutableString object. We
can use a convenience method to do this for now.

NSMutableString *messageString = [NSMutableString
stringWithString:@"Hello"];
Make sure to locate this object before the code used to create the two

UIAlertViewobjects. Now let’s replace the text in the two UIAlertView objects

with theNSMutableString object that we just created:

NSMutableString *messageString = [NSMutableString stringWithString:@"Hello"];

UIAlertView *alert1 = [[UIAlertView alloc] initWithTitle:@"Alert View"
 message:messageString
 delegate:self
 cancelButtonTitle:@"Ok", nil
 otherButtonTitles:nil];
[alert1 show];

UIAlertView *alert2 = [[UIAlertView alloc] initWithTitle:@"Alert View"
 message:messageString

 Beginning Objective-C Programming - 80

 delegate:self
 cancelButtonTitle:@"Ok", nil
 otherButtonTitles:nil];
[alert2 show];

If you run this right now you will simply get two UIAlertViews that say “Hello”.

What I want to do now is use appendString method to add “ World” to the hello

world message. To do this we can send the appendString message to the

messageStringobject right in between two UIAlertView objects.

NSMutableString *messageString = [NSMutableString stringWithString:@"Hello"];

UIAlertView *alert1 = [[UIAlertView alloc] initWithTitle:@"Alert View"
 message:messageString
 delegate:self
 cancelButtonTitle:@"Ok", nil
 otherButtonTitles:nil];
[alert1 show];

[messageString appendString:@" World"];

UIAlertView *alert2 = [[UIAlertView alloc] initWithTitle:@"Alert View"
 message:messageString
 delegate:self
 cancelButtonTitle:@"Ok", nil
 otherButtonTitles:nil];
[alert2 show];

Now when you build and run the project the first UIAlertView object will pop up
and say “Hello” and the second will say “Hello World”.

NSMutableString has more methods that you can use to alter the contents of
the string: you can insert characters, delete characters and more.

 Beginning Objective-C Programming - 81

NSArray

NSArray is a class that you can use when you want to work with a list of other
objects. This is the object oriented version of the arrays that you were introduced

to in the chapter on variables and arrays. The image below shows you how

NSArray fits into the inheritance hierarchy. NSArray can only be used for objects

(no primitive types like int or float allowed). Unlike the arrays you already have

seen, NSArray has behaviors that can help you manage the objects contained in
the array.

 Beginning Objective-C Programming - 82

http://howtomakeiphoneapps.com/wp-content/uploads/2011/11/makeiphoneappC11-4.png
http://howtomakeiphoneapps.com/wp-content/uploads/2011/11/makeiphoneappC11-4.png

To create a NSArray object you must send the alloc and initWithObjects

messages.initWithObjects requires a comma-separated list of objects and the

last one must benil. Let’s create an NSArray object right now:

NSArray *listOfStrings = [[NSArray alloc] initWithObjects:@"One", @"Two", @"Three", nil];

If you are following along you can put this code right after the line of code where

you created your NSMutableString object. Each of the strings in the code above

(@”One”, @”Two”, @”Three”) are all NSString objects here. Using the @ compiler
directive along with double quotes is a shortcut that you can use anytime that

you need a temporary NSString object. The initWithObjects method requires a
list of objects and the last object must be nil. We have not discussed nil yet,

essentially nil is a reference to an empty object.

Now that you have this list of objects called listOfStrings you can access each

of the members of this list using the objectAtIndex message. objectAtIndex

requires us to send along a parameter to tell the NSArray object what object we
want to reference. This parameter will be an integer that corresponds to the

member of the array that we want. Let’s say we want to use the first and second

members of listOfStrings in our UIAlertView objects. We could replace our

NSMutableStringobject with an objectAtIndex message sent to listOfStrings.

NSMutableString *messageString = [NSMutableString stringWithString:@"Hello"];

NSArray *listOfStrings = [[NSArray alloc] initWithObjects:@"One", @"Two", @"Three", nil];

UIAlertView *alert1 = [[UIAlertView alloc] initWithTitle:@"Alert View"
 message:[listOfStrings objectAtIndex:0]
 delegate:self

 Beginning Objective-C Programming - 83

 cancelButtonTitle:@"Ok", nil
 otherButtonTitles:nil];
[alert1 show];

UIAlertView *alert2 = [[UIAlertView alloc] initWithTitle:@"Alert View"
 message:[listOfStrings objectAtIndex:1]
 delegate:self
 cancelButtonTitle:@"Ok", nil
 otherButtonTitles:nil];
[alert2 show];

When you Build and Run your project now the two UIAlertView objects will
display the first and second members of your list. See the image below as an

example:

 Beginning Objective-C Programming - 84

http://howtomakeiphoneapps.com/wp-content/uploads/2011/11/makeiphoneappC11-5.png
http://howtomakeiphoneapps.com/wp-content/uploads/2011/11/makeiphoneappC11-5.png

For Each Loop

A really nice feature of NSArray is that you can use the for each loop. We already
have three types of loops that we use in programming that we learned about in

previous chapters: for, do and while loops. These loops all require used to either

know how many actions we needed to take beforehand, how many elements

were in the arrays were using or they required us to define some other condition

to end the loop. For each loops don’t require any of these things and they are

very easy to use.

The idea behind the for each loop is that the loop will do something for each

member of the list. All you really need to do is set up a for statement that

specifies that class definition of the objects in the list. For example, if I want to

quickly write out each string in our listOfStrings object I could simply use a for
each loop to do this in two lines of code:

for(NSString *s in listOfStrings)
 NSLog(@"%@", s);

We need to start out our for each loop with the keyword for and then put an

expression in parenthesis that includes the class definition (NSString here), a

temporary object variable *s, the keyword in and finally the NSArray object that
we are looking at. The statement above will print something like this out to your

console:

One
Two
Three

 Beginning Objective-C Programming - 85

NSMutableArray

NSArray is great, but like NSString you cannot make any changes to

NSArrayobjects once you create them. This means that you cannot add or
remove objects from your lists. If you need a list that has the ability to add and

remove objects then you must use NSMutableArray. NSMutableArray is a kind

of NSArray and so has all the features of NSArray but with the additional of
methods that allow adding and removing objects. See the image below to find

out where NSMutableArray belongs in the Foundation inheritance hierarchy.

 Beginning Objective-C Programming - 86

http://howtomakeiphoneapps.com/wp-content/uploads/2011/11/makeiphoneappC11-6.png
http://howtomakeiphoneapps.com/wp-content/uploads/2011/11/makeiphoneappC11-6.png

You can instantiate a NSMutableArray object in the same way as a NSArray
object. There are actually a few ways to create objects like this, but the easiest

way to create a NSMutableArray object is to simply use the alloc and init
messages.

NSMutableArray *mutableListOfStrings = [[NSMutableArray alloc] init];
You can now start adding objects to this list. Just to demonstrate I am going to

add some strings to mutableListOfStrings objects by using the addObject
message.

NSMutableArray *mutableListOfStrings = [[NSMutableArray alloc] init];
[mutableListOfStrings addObject:@"One"];
[mutableListOfStrings addObject:@"Two"];
[mutableListOfStrings addObject:@"Three"];

You can use NSMutableArray objects like NSArray objects as well

sinceNSMutableArray is an kind of NSArray. That means that you can use the

for each loop with NSMutableArray so this would work in the same way as it did
for the previous example.

NSMutableArray *mutableListOfStrings = [[NSMutableArray alloc] init];
[mutableListOfStrings addObject:@"One"];
[mutableListOfStrings addObject:@"Two"];
[mutableListOfStrings addObject:@"Three"];

for(NSString *s in mutableListOfStrings)
 NSLog(@"%@", s);

You can also remove objects from NSMutableArray lists by using

removeObjectAtIndex message. This message requires the position of the

 Beginning Objective-C Programming - 87

member object that you want to remove. So if you want to remove the second

object in mutableListOfStrings then you need to pass the integer 1 as a
parameter with this message.

NOTE: Arrays are indexed starting with the integer 0 so the first member in an

array would be member 0, the second would be member 1 and so on.

Here is an example of how to remove an object from an NSMutableArray list:

[mutableListOfStrings removeObjectAtIndex:1];

You have some variations of this method that you can use as well as methods to

insert objects as well. As always, it is a good idea to consult the documentation

to get a full appreciation of what you can do with NSMutableArray.

Hands On Time

Create a NSMutableArray and add the names of five people that you know to

the array. Next, look up the insertObject:AtIndex method to find out how to add
your own name to the middle of the array. Finally, use a for each loop to go

through your entire array. Add code to your for each loop to have a UIAlertView
present each name.

 Beginning Objective-C Programming - 88

Chapter Nine: How To Create Your Own Classes

At some point you will want to define your own classes to

use in your app. So now let’s expand on the notion of

object oriented programming by showing you how to

implement your own custom classes. At this point you

should be familiar with using existing objects in code; but

you also need to be able to create your own types of

objects.

Sub-Classes

One of the most common things that you will be doing with classes is something

called sub-classing. As you can guess the iPhone has classes already in place to

do things like present data tables, present windows and so on. Usually you will

be creating your own object that inherits one of these preexisting objects and

adding your own custom code to it. This is sub-classing.

Adding a New Class

XCode will help you do the initial set up work when you are creating a new class.

To add a class you can simply control-click on a group folder in XCode and

select New File… . In the dialog box that pops up select iOS > Cocoa Touch >

Objective-C class and click Next . Then name your class and choose NSObject
as the subclass.

 Beginning Objective-C Programming - 89

Let’s do this now and call our class myClass. XCode created both the interface

and the implementation files for myClass and added the code we need to get

started. The interface file is the one that ends in .h. If you open that file you will
see the code that XCode automatically filled in for us.

#import <Foundation/Foundation.h>

@interface myClass : NSObject{

}

@end

Interface File

This interface file uses an import directive to import the Foundation classes

(which we always need to use). It also uses the interface keyword with the name

of the class (myClass here) to indicate that we are defining a class.

The colon and the name NSObject means that our class will be a subclass

ofNSObject. Sub-classing and inheritance mean the same thing. You can say

thatmyClass inherits from NSObject or you can say myClass is a subclass of

NSObject.

We end the interface declaration with the end keyword @end.

Implementation File

XCode also created an implementation file, in case you did not notice XCode will

create a separate file for the interface (header file that ends in .h) and the

 Beginning Objective-C Programming - 90

implementation file (ends in .m). Click on the implementation file to see the code
that XCode added on our behalf.

#import "myClass.h"

@implementation myClass

@end

Our implementation file simply imports the myClass interface and includes

the@implementation and @end keywords along with the name of our class.

Simple enough – we have created our first class. Right now it behaves exactly

likeNSObject, but soon we will be adding our own properties and methods to the
class.

Adding Properties

When you add a property in a class you end up using a little black magic. That is,

the system takes care of some of the implementation details for you if you do

things in the typical way. You need to do two things to get a working property

into your class: declare the property and then use @synthesize.

Here is what this looks like in the code:

Interface File (myClass.h):

#import <Foundation/Foundation.h>

@interface myClass : NSObject

@property (strong) NSString *name;

 Beginning Objective-C Programming - 91

@end

The property is defined by using the @property directive. The key thing to note

here is strong.

Back in the implementation file we use @synthesize to evoke all the black magic
that is required to create the property based on our definition in the interface file.

#import "myClass.h"

@implementation myClass
@synthesize name;

@end

One thing that is significant though is that when you use primitive types as

properties the syntax is a little different. For example, I am going to add a number

property to my class that is an integer. Notice that it is done in a slightly different

way:

#import <Foundation/Foundation.h>

@interface myClass : NSObject

@property (strong) NSString *name;
@property (assign) int number;

@end

 Beginning Objective-C Programming - 92

The first thing is that there is no asterisk * since this is not an object variable. The

other thing is that instead of using the strong keyword it is using assign in the
property declaration.

Dot Notation

What all this does for you is give you the ability to assign and retrieve the

property values using dot notation. You have already encountered this in the

examples. Here is how you use dot notation with a myClass object.

//Instantiate an object from myClass:
myClass *object = [[myClass alloc] init];

//assign properties:
object.name = @"Obie";
object.number = 3;

//Access and use the properties
//with dot notation:
NSLog(@"My object's name is %@", object.name);
NSLog(@"My Object's number is %i", object.number);

Note that we use an alloc and init message even though we never created these

in our class definition. Since our class is a subclass of NSObject we can simply

use the original NSObject constructer to create objects. We can also code
additional constructors if we want to set properties before we return our object to

the system.

Class Methods

 Beginning Objective-C Programming - 93

As you remember from chapter ten , objects have both properties and methods.

Properties describe the object (the object’s attributes) while methods are what

the object does (the object’s behaviors).

Furthermore, methods can be either class methods or instance methods. Class

methods do not require an instance of a class (an object) to be used, you simply

send the message to the class itself.

Here is how to declare a class method:

Interface File:

#import <Foundation/Foundation.h>

@interface myClass : NSObject

@property (strong) NSString *name;
@property (assign) int number;

+(void)writeSomething;

@end
Implementation File:
#import "myClass.h"

@implementation myClass

@synthesize name, number;

+(void)writeSomething{
! NSLog(@"I'm writing something");
}

@end

Here, the plus sign indicates that this is a class method and the void in between

the parenthesis means that the method will not return a value. This is followed by

 Beginning Objective-C Programming - 94

the name of the method and curly braces. Whatever we want the function to do

we put in between the curly braces as code.

Since this is a class method we do not even need an object to use this method.

All we need to do is send a message to the class name itself:

[myClass writeSomething];

Instance Methods

Instance methods also are used to code behavior, but these are different than

class methods because they may only be used by sending a message to an

object. You code them the same way inside the class definition but you prefix the

method with a minus sign instead of a plus sign:

Interface File:

#import <Foundation/Foundation.h>

@interface myClass : NSObject

@property (strong) NSString *name;
@property (assign) int number;

+(void)writeSomething;
-(void)writeSomethingForAnObject;

@end

Implementation File:

#import "myClass.h"

 Beginning Objective-C Programming - 95

@implementation myClass

@synthesize name, number;

+(void)writeSomething{
! NSLog(@"I'm writing something");
}

-(void)writeSomethingForAnObject{
! NSLog(@"I'm writing something, but only as an object");
}

@end

To use an instance method we must have an object available.

myClass *object = [[myClass alloc] init];
[object writeSomethingForAnObject];

Method Parameters

Like functions in C you can pass parameters to methods in Objective-C. The

syntax looks different. To put a parameter into the method declaration you must

add a colon after the method name and then declare the object type and name

the parameter:

Interface File:

#import <Foundation/Foundation.h>

@interface myClass : NSObject

@property (strong) NSString *name;
@property (assign) int number;

 Beginning Objective-C Programming - 96

+(void)writeSomething;
-(void)writeSomethingForAnObject;
-(void)aMethodWithThisParameter:(NSString *)param;

@end

Implementation File:

#import "myClass.h"

@implementation myClass

@synthesize name, number;

+(void)writeSomething{
! NSLog(@"I'm writing something");
}

-(void)writeSomethingForAnObject{
! NSLog(@"I'm writing something, but only as an object");
}

-(void)aMethodWithThisParameter:(NSString *)param{
! NSLog(@"%@", param);
}

@end

To use this method you would do this (this will be familiar to you):

myClass *object = [[myClass alloc] init];
[object aMethodWithThisParameter:@"Say What?"];

Multiple Parameters

 Beginning Objective-C Programming - 97

You may have your methods take more than one parameter. Objective-C has a

unique way of doing this where you may include a descriptive phrase in the

method declaration.

Interface File:

#import <Foundation/Foundation.h>

@interface myClass : NSObject

@property (strong) NSString *name;
@property (assign) int number;

+(void)writeSomething;
-(void)writeSomethingForAnObject;
-(void)aMethodWithThisParameter:(NSString *)param;
-(void)aMethodWithThisParameter:(NSString *)param
! ! andThisParameter:(int)num;

@end

Implementation File:

#import "myClass.h"

@implementation myClass
@synthesize name, number;

+(void)writeSomething{
! NSLog(@"I'm writing something");
}

-(void)writeSomethingForAnObject{
! NSLog(@"I'm writing something, but only as an object");
}

-(void)aMethodWithThisParameter:(NSString *)param{
! NSLog(@"%@", param);
}

-(void)aMethodWithThisParameter:(NSString *)param
 andThisParameter:(int)num{
! NSLog(@"%@ + %i", param, num);
}

 Beginning Objective-C Programming - 98

@end

The key difference between methods with one parameter and methods with two

is that starting with the second parameter each gets its own descriptive text

prefix. Above it is andThisParameter: which is in front of the parameter num.

Your probably already guessed that you send a message to an object using two

parameters like this:

[object aMethodWithThisParameter:@"One" andThisParameter:2];

Constructors

We know that constructers are special methods that return an instance of an

object back to the system. We are already using the constructer that we inherited

fromNSObject, init to instantiate an object from myClass. We can create a
custom constructor if it is needed.

In general, we always prefix our constructor with init. This is a matter of

convention. Let’s start by defining our constructor in the myClass
implementation file:

#import

@interface myClass : NSObject

@property (strong) NSString *name;

 Beginning Objective-C Programming - 99

@property (assign) int number;

+(void)writeSomething;
-(void)writeSomethingForAnObject;
-(void)aMethodWithThisParameter:(NSString *)param;
-(void)aMethodWithThisParameter:(NSString *)param
! ! ! ! andThisParameter:(int)num;
-(id)initWithName:(NSString *) aName;

@end

Instead of being declared as a void type as our previous methods our

constructor will be declared as an id. id means that our method will be returning
a value that not yet defined. Whenever you replace the void with another type

you are saying that this method will be returning a value (like a function in C).

Our constructor will also be taking a parameter which we will use to assign a

name to the object’s name property. Here is how we implement this constructor:

#import "myClass.h"

@implementation myClass
@synthesize name, number;

+(void)writeSomething{
! NSLog(@"I'm writing something");
}

-(void)writeSomethingForAnObject{
! NSLog(@"I'm writing something, but only as an object");
}

-(void)aMethodWithThisParameter:(NSString *)param{
! NSLog(@"%@", param);
}

-(void)aMethodWithThisParameter:(NSString *)param
! ! ! ! andThisParameter:(int)num{
! NSLog(@"%@ + %i", param, num);
}

 Beginning Objective-C Programming - 100

-(id)initWithName:(NSString *) aName{
! if (self = [super init]){
! ! self.name = aName;
! }
! return self;
}

@end

In the if-then statement above we assign the object returned from the constructor

that we inherited from NSObject to the current object (notice that there is only

one equals sign). The self keyword always refers to the object in which the self

keyword was placed while the super keyword refers to the class it is being
inherited from (sometimes called the superclass).

Once we have successfully retrieved the object from the super init we can
assign values to our properties.

Here is how you would use your new constructor to create an object:

myClass *object = [[myClass alloc] initWithName:@"MyObject"];

Hands On Time

Practice creating your class by first thinking all some attributes and behaviors

could represent a person in your code. Keep it simple but meaningful. Use the

techniques that you learned in this chapter to create a class definition for a

person. Instantiate and use objects created from this class definition. Try using a

NSMutableArray to hold a list of your person objects.

 Beginning Objective-C Programming - 101

Chapter 10: Extending Classes with Categories

Much of the day to day work in object-oriented

programming involves using classes that are already

written. Sometimes we want our classes to do just a little

bit more. That means they need more properties and

methods and adding these entities changes the nature of

the class. This is called sub-classing and we already

covered how to do that.

There are times, however, when we want to extend the abilities of class but we

don’t want to define a completely new class. You will encounter these situations

more and more as you plunge into Objective-C programming. Perhaps more

importantly, you will find examples of category use throughout the Mac and iOS

programming examples written by Apple and other developers.

So, to extend a class without sub-classing you have the option of using

categories. Let’s talk about how to do this.

Defining a Category

In the last chapter we worked with a class called myClass so let’s continue to

use this class as an example. Let’s assume that we are working with myClass

but we need one more method that myClass does not currently support. Only
our application delegate needs this method and so it we do not want every

component in our system to have access to this very specialized method.

 Beginning Objective-C Programming - 102

This is a great opportunity to use a category. A category definition looks like a
class definition in that it has an interface and an implementation definition. To

keep things simple I just put it into the file I am working with at the time before

the implementation. However, you could also put them into an external file and

use an import directive if you want to share categories.

For now I am just going to add this to the application delegate and I will put code

right after the import directives and before the application delegate’s own

implementation:

#import "ObjCExamplesAppDelegate.h"
#import "myClass.h"

@interface myClass (AddToMyClass)
- (int) numOfStuff;
@end

@implementation myClass (AddToMyClass)
- (int) numOfStuff{
 return 5;
}
@end

@implementation ObjCExamplesAppDelegate
@synthesize window;

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary
*)launchOptions {
 [window makeKeyAndVisible];
}

@end

The two highlighted regions above are the interface and implementation for the

AddToMyClass category. As you can see these look like class definitions except
that these do not use the colon indicating that they are a subclass but they have

 Beginning Objective-C Programming - 103

the category name in parenthesis instead. Defining the methods works the same

way as it does for classes.

Now that we have included this category definition we can use the numOfStuff
function from within the application delegate. You use these methods like any

other:

#import "ObjCExamplesAppDelegate.h"
#import "myClass.h"

@interface myClass (AddToMyClass)
- (int) numOfStuff;
@end

@implementation myClass (AddToMyClass)
- (int) numOfStuff{
 return 5;
}
@end

@implementation ObjCExamplesAppDelegate
@synthesize window;

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary
*)launchOptions {

 myClass *object = [[myClass alloc] initWithName:@"MyObject"];
 NSLog(@"Numbers of Stuffs: %i", [object numOfStuff]);

 [window makeKeyAndVisible];
}

@end

Using Categories with Standard Objects

One clever thing that you may find yourself doing with categories is using them

with the regular foundation classes. It is a good way to quickly extend these

 Beginning Objective-C Programming - 104

classes when especially when it would be confusing to use your own subclasses

of common classes like NSString.

Extend NSString

Here is an example of how and why you may want to do this. I commonly need to

enclose strings into HTML tags like <p> and <h3> in my blogging application. I

could simply subclass NSString and maybe call it NSHTMLString or something
and give that class new methods to make adding tags a little easier.

I could simply add a category as an alternative. So, here is how I would do that in

my application delegate:

#import "ObjCExamplesAppDelegate.h"
#import "myClass.h"

@interface NSString (HTMLTags)
- (NSString *) encloseWithParagraphTags;
@end

@implementation NSString (HTMLTags)
- (NSString *) encloseWithParagraphTags{
 return [NSString stringWithFormat:@"<p>%@</p>",self];
}
@end

@implementation ObjCExamplesAppDelegate
@synthesize window;

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary
*)launchOptions {
 NSString *text =@"Have you ever read a blog post?";
 NSLog(@"%@", [text encloseWithParagraphTags]);
 [window makeKeyAndVisible];
}

@end

 Beginning Objective-C Programming - 105

All I need to do to turn my string into a correctly tagged paragraph is send the

encloseWithParagraphTags message. Here is the output:

ObjCExamples[644:20b] <p>Have you ever read a blog post?</p>

Summary

In this chapter you learned an alternative to subclassing when you want to

extend class functionality. You may not need to use this technique in the

beginning, but using categories is a simple trick that could make your life easier

down the road.

Hands On Time

Experiment with categories by adding methods to the NSString class that you
think could be useful. Try to use this method by putting the category definition in

a separate file and using an import directive to share the category definition

among at least two other classes in a project.

 Beginning Objective-C Programming - 106

Chapter 11: Protocols In Objective-C

A protocol is a way to require classes to implement a set

of methods. We define a protocol much like a class or a

category, it is essentially a list of methods. Protocols do

not do anything themselves, they are a definition of a type

of contract that we can require other classes to

implement.

We call that adopting the protocol and we’ve seen this before. You may recall

that the application delegate file that XCode created for use included this as part

of the application delegate interface:

<UIApplicationDelegate>

This was required because we needed our class to act as an application

delegate. This delegation pattern is implemented using protocols because we

need a way to require a class to implement a set of methods in order for it to act

as a delegate. The code above is how you indicate to the system that a class is

adopting a protocol.

How to Define a Protocol

To define a protocol you need a separate header file. You can get one of these by

right clicking your group folder and selecting New > New File… > C and C ++ >

 Beginning Objective-C Programming - 107

Header File. Then you simply start the protocol definition using the @protocol
keyword:

#import <Foundation/Foundation.h>
@protocol ImplementIt
@end

As you can see it works like a class definition. All you need to do now is fill in

what methods you want to be part of the protocol. I want my ImplementIt

protocol to require my classes to return three strings that would be used in HTML

documents:

#import <Foundation/Foundation.h>
@protocol ImplementIt
- (NSString *) header;
- (NSString *) title;
- (NSString *) paragraph;
@end

That is all there is too it and this looks just like an interface definition. If I want to

have a class adopt my protocol all I need to do is add <ImplementIt> to the

interface definition and import the header file. Of course, now I will be required to

implement the three methods above or XCode will report an error.

Here is how I did this for myClass:

Interface:

#import <Foundation/Foundation.h>

 Beginning Objective-C Programming - 108

#import "ImplementIt.h"
@interface myClass : NSObject<ImplementIt>
[CODE OMITTED HERE]
@end

Implementation:

#import "myClass.h"
@implementation myClass
@synthesize name, number;
[CODE OMITTED]
//Implementing ImplementIt protocol
- (NSString *) header{
 return @"<h1>Header Text</h1>";
}
- (NSString *) title{
 return @"<title>Title Text</title>";
}
- (NSString *) paragraph{
 return @"<p>Paragraph Text</p>";
}
@end

That is all there is to it. If you have not done much object oriented programming

and are confused about why you would need to use protocols don’t worry about

it right now. This technique solves a problem that you probably just have not

dealt with yet. The key thing to remember for now is that protocols are what is

required to make delegation work and delegation is used frequently in iPhone

programming.

 Beginning Objective-C Programming - 109

Chapter 12: Key-Value Coding (KVC)

Another advanced technique is key value coding or KVC.

This involves using a set of NSObject methods that can
set or get property values based on their string

representation. So, if a class has a name property you can
get or set that value by using the dot notation in code or

you can query the object with the string name to get or
set the value.

This is an alternative to the typical way of working with properties that you can

use in situations where you may not know the name of the property you will need

at the time of writing the code. You may also use KVC to query arrays of objects

or even arrays that are properties of an object.

How to Use KVC

Let’s assume that I have an object of myClass available to me. If I wanted to find
the name I could just use dot notation as we have been discussing:

NSLog(@"name: %@", object.name);

Alternatively I could use KVC:

NSLog(@"name: %@", [object valueForKey:@"name"]);

 Beginning Objective-C Programming - 110

The less than obvious benefit to KVC is that you do not really need to know the

name of the property beforehand to use the property value. Again, if you do not

see why this is a big deal then this is just solving a problem that you have not yet

run into. When you do remember to come back to this section and apply what

you learn.

You can also set properties using KVC:

[object setValue:@"New Object Name" forKey:@"name"];

You can even use KVC on hierarchies of objects. So, if I wanted to get the

uppercase representation of my string name I could use the valueForKeypath
message to do this:

NSLog([object valueForKeyPath:@"name.uppercaseString"]);

The code above hints a bit more at why this technique is powerful. KVC really

shines when we have an array of objects that we want to query.

How to Query an Array of Objects

We will end with this very powerful trick. Imagine that you have a list of objects

and each object is composed of many properties. There may be some times

where you would like to know what property value is in each object in your list.

 Beginning Objective-C Programming - 111

For instance, if you had a list of contacts you may want to just extract every

email address that is in the list.

You can do this with KVC very easily. All you need to do is send the valueForKey
message to the array that is holding your objects and you will get a new array

filled with each value that you asked for. In the example below I will first add three

myClass objects to an array:

myClass *object = [[myClass alloc] init];
NSMutableArray *listOfObjects = [[NSMutableArray alloc] init];
object = [[myClass alloc] initWithName:@"FirstName"];
[listOfObjects addObject:object];
object = [[myClass alloc] initWithName:@"AnotherName"];
[listOfObjects addObject:object];
object = [[myClass alloc] initWithName:@"LastName"];
[listOfObjects addObject:object];

Now, to retrieve the value of each name property I will use the valueForKey
message to populate a new array with the name values:

NSArray *results = [listOfObjects valueForKey:@"name"];
for(NSString *s in results)
 NSLog(@"name: %@", s);

The code above puts all the name values into the results array and prints them

out to the log:

ObjCExamples[4646:20b] name: FirstName
ObjCExamples[4646:20b] name: AnotherName
ObjCExamples[4646:20b] name: LastName

 Beginning Objective-C Programming - 112

Hands-On Time

Use the class definitions you created in the previous lesson to experiment with

key-value coding. Put your objects into an array and find different ways to

retrieve property values in your objects. Think of a way to incorporate the idea of

protocols into your car and driver system. Implement your idea.

 Beginning Objective-C Programming - 113

