Making an Objective-C Statement
Programming iPhone and Mac apps in Objective-C is about making a statement. You can recognize a statement in Objective-C immediately by noting the semicolon at the end:
statement;
You will see other lines of code, but unless the line ends with a semicolon, it is not an Objective-C statement.
Objective-C Built-in Data Types and New Data Types
The variables you declare in Objective-C, Objective-C data types, must be a type that the compiler can recognize. Objective-C comes with a number of built-in data types, as well as mechanisms to create new ones, for programming your iPhone or Mac OS X applications.
	Built-In Types

	Type
	Description
	Size

	char
	A character
	1 byte

	int
	An integer — a whole number
	4 bytes

	float
	Single precision floating point number
	4 bytes

	Double
	Double precision floating point number
	8 bytes

	short
	A short integer
	2 bytes

	long
	A double short
	4 bytes

	long long
	A double long
	8 bytes

	BOOL
	Boolean (signed char)
	1 byte

Enumeration types
enum typeName { identifier1, ... identifiern};
Identifiers are of constants of type int.
typedef
typedef typeName identifier;
Associates an identifier with a specific type.
Constants
const type identifier = value;
#define identifier value
Allows you to define names for constants.

Objective-C Operators
Objective-C operators, like those in other programming languages, let you perform operations on variables (hence the name). Objective-C provides many operators, and keeping track of all of them can be difficult as you program your iPhone or Mac OS X apps. Use the following tables to jog your memory as to which operator accomplishes what task.
	Arithmetic Operators

	Operator
	What It Does

	+
	Addition

	-
	Subtraction

	*
	Multiplication

	/
	Division

	%
	Modulo

	Relational and Equality Operators

	Operator
	What It Does

	==
	Equal to

	!=
	Not equal to

	>
	Greater than

	<
	Less than

	>=
	Greater than or equal to

	<=
	Less than or equal to

	Logical Operators

	Operator
	What It Does

	!
	NOT

	&&
	Logical AND

	||
	Logical OR

	Compound Assignment Operators

	Operator
	What It Does

	+=
	Addition

	-=
	Subtraction

	*=
	Multiplication

	\/=
	Division

	\%=
	Modulo

	&=
	Bitwise AND

	|=
	Bitwise Inclusive OR

	^=
	Exclusive OR

	<<=
	Shift Left

	>>=
	Shift Right

	Increment and Decrement Operators

	Operator
	What It Does

	++
	Addition

	--
	Subtraction

	*=
	Multiplication

	/=
	Division

	%=
	Modulo

	&=
	Bitwise AND

	|=
	Bitwise Inclusive OR

	^=
	Exclusive OR

	<<=
	Shift Left

	>>=
	Shift Right

	Bitwise Operators

	Operator
	What It Does

	&
	Bitwise AND

	|
	Bitwise Inclusive OR

	^
	Exclusive OR

	~
	Unary complement (bit inversion)

	<<
	Shift Left

	>>
	Shift Right

	Other operators

	Operator
	What It Does

	()
	Cast

	,
	Comma

	Sizeof()
	Size of

	? :
	Conditional

	&
	Address

	*
	Indirection

Control Statements and Loops in Objective-C
In programming, as in life, you have to make decisions and act on them. Objective-C provides control statements and loops to help your program take action. You may want to repeat a set of instructions based on some condition or state, for example, or even change the program execution sequence. Here is the basic syntax for Objective-C control statements and loops.
if else
if (condition) {
 statement(s) if the condition is true;
 }
else {
 statement(s) if the condition is not true;
 }
for
for (counter; condition; update counter) {
 statement(s) to execute while the condition is true;
 }
for in
for (Type newVariable in expression) {
 statement(s);
 }
or
Type existingVariable ;
for (existingVariable in expression) {
 statement(s);
 }
Expression is an object that conforms to the NSFastEnumeration protocol.
· An NSArray and NSSet enumeration is over content.
· An NSDictionary enumeration is over keys.
· An NSManagedObjectModel enumeration is over entities.
while
while (condition) {
 statement(s) to execute while the condition is true
 }
do while
do {
 statement(s) to execute while the condition is true
 } while (condition);
Jump statements
return ;
Stop execution and returns to the calling function.
break;
Leave a loop.
continue;
Skip the rest of the loop and start the next iteration.
goto labelName;
...
labelName:
An absolute jump to another point in the program (don’t use it).
exit();
Terminates your program with an exit code.
Declaring Classes and Sending Messages in Objective-C
Object-oriented programming languages enable you to declare classes, create derived classes (subclass), and send messages to the objects instantiated from a class. This is the essence of object-oriented programming and part of the object-oriented extensions that Objective-C adds to C. To ensure that everything operates smoothly, compiler directives are available that enable you to inform the compiler of your classes by using @class and #import.
Interface
#import "Superclass.h"
@interface ClassName : Superclass {
instance variable declarations;
}
method declarations
@property(attributes) instance variable declaration;
–d
Implementation
#import "ClassName.h"
@implementation ClassName
@synthesize instance variable ;
method definitions
–d
Message Syntax
[receiver message]
#import
#import “filename.h”
Guarantees that a header file will be included only once.
@class
@class ClassName;
Clues the compiler into user defined types.

